
Polyspace® Bug Finder™ Server™
Reference

R2019a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Polyspace® Bug Finder™ Server™ Reference
© COPYRIGHT 2019 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government's needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.
Revision History
March 2019 Online only New for Version 3.0 (R2019a)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Polyspace Bug Finder Server Commands
1

Option Descriptions
2

Polyspace Command-Line Options
3

iii

Contents

Polyspace Bug Finder Server
Commands

1

polyspace-access
(DOS/UNIX) Manage upload or export of Polyspace results from the Polyspace Access web
interface

Syntax
polyspace-access -host hostname [configuration options] -create-
project projectFolder

polyspace-access -host hostname [configuration options] -upload
pathToFolderOrZipFile [upload options]
polyspace-access -host hostname [configuration options] -export
findingsToExport -output filePath [export options]

polyspace-access -host hostname [configuration options] -set-
unassigned-findings findingsToAssign -owner userToAssign -source-
contains pattern [set unassigned findings options]

polyspace-access -host hostname [configuration options] -list-
project [findingsPath]

polyspace-access -host hostname [configuration options] -set-role
role -user username -project-path projectFolderOrFindingsPath
polyspace-access -host hostname [configuration options] -unset-role
-user username -project-path projectFolderOrFindingsPath

polyspace-access -encrypt-password

polyspace-access -generate-migration-commands metrics_dir -output-
folder-path dir [generate migration commands options]
polyspace-access -host hostname [configuration options] -migrate -
option-file-path dir [-dryrun]

Description
polyspace-access -host hostname [configuration options] -create-
project projectFolder creates a project folder in the Polyspace Access web

1 Polyspace Bug Finder Server Commands

1-2

interface. The folder can be at the top of the project hierarchy or a subfolder under an
existing project folder.

polyspace-access -host hostname [configuration options] -upload
pathToFolderOrZipFile [upload options] uploads Polyspace results from a folder
or a zipped file to the Polyspace Access database. Use the upload options to specify a
project folder other than public.

polyspace-access -host hostname [configuration options] -export
findingsToExport -output filePath [export options] exports project results
from a project in the Polyspace Access database to a text file whose location you specify
with filePath. You specify the project using either the full path in Polyspace Access or
the run ID. Use this command to export findings to other tools that you use for custom
reports. To get the paths to projects and their last run IDs, use the polyspace-access
command with the -list-project option.

polyspace-access -host hostname [configuration options] -set-
unassigned-findings findingsToAssign -owner userToAssign -source-
contains pattern [set unassigned findings options] assigns owners to
unassigned results in a project in the Polyspace Access database. You specify the project
using either the full path in Polyspace Access or the run ID. Use the set unassigned
findings options to assign findings from different source files or different groups of
source files to different owners. To get the paths to projects and their last run IDs, use the
polyspace-access command with the -list-project option.

polyspace-access -host hostname [configuration options] -list-
project [findingsPath] without the optional argument findingsPath lists the
paths to all projects in the Polyspace Access database and their last run IDs. If you specify
the full path to a project with the argument findingsPath, the command lists the last
run ID.

polyspace-access -host hostname [configuration options] -set-role
role -user username -project-path projectFolderOrFindingsPath assigns a
role role to the user specified by username for the specified project or project folder. A
user role set for a project folder applies to all project findings under that folder. You
specify the project using either the full path in Polyspace Access or the last run ID. To get
the paths to projects and their last run IDs, use the polyspace-access command with
the -list-project option.

polyspace-access -host hostname [configuration options] -unset-role
-user username -project-path projectFolderOrFindingsPath removes any

 polyspace-access

1-3

role previously assigned to username for the specified project or project folder. You
specify the project using either the full path in Polyspace Access or the last run ID. To get
the paths to projects and their last run IDs, use the polyspace-access command with
the -list-project option.

polyspace-access -encrypt-password encrypts the password you use to log into
Polyspace Access. Use the output of this command as the argument of the -encrypted-
password option when you write automation scripts to interact with Polyspace Access.

polyspace-access -generate-migration-commands metrics_dir -output-
folder-path dir [generate migration commands options] generates scripts to
migrate projects from the path metrics_dir in Polyspace Metrics to Polyspace Access.
The command stores the scripts in dir. To specify which project findings to migrate, use
generate migration commands options.

polyspace-access -host hostname [configuration options] -migrate -
option-file-path dir [-dryrun] migrates projects from Polyspace Metrics to
Polyspace Access using the scripts generated with the -generate-migration-
commands option. To view which projects are migrated without actually migrating the
projects, use the -dryrun option.

Examples

Encrypt Password and Set Configuration Options

Polyspace Access requires login credentials. You can enter them at the command line
when you execute a command, or you can generate an encrypted password that you use
in automation scripts.

To encrypt your password, use the -encrypt-password command and enter your
Polyspace Access credentials.

polyspace-access -encrypt-password

The command uses the user name and password you enter to generate an encrypted
password.

1 Polyspace Bug Finder Server Commands

1-4

login: jsmith
password:
CRYPTED_PASSWORD KEAGKAMJMCOPLFKPKOHOJNDJCBACFJBL
Command Completed

If you manage your analysis findings through automated scripts, create a variable to store
the connection configuration and login credentials. Use this variable in your script, or at
the command line to avoid entering your credentials when you execute a command.

set LOGIN=-host my-company-server -port 1234 ^
-protocol https -login jsmith ^
-encrypted-password KEAGKAMJMCOPLFKPKOHOJNDJCBACFJBL
polyspace-access %LOGIN% -create-project myProject

Create a Project Folder with Restricted Access and Upload to Folder

Suppose that you want to upload a set of findings to Polyspace Access and authorize only
some team members to view these findings.

Create a project folder Restricted at the top of the project hierarchy.

polyspace-access -host my-company-server -port 1234 ^
-create-project Restricted

Set user roles for users aUser and bUser, authorizing them to access the project folder
as contributors.

polyspace-access -host my-company-server ^
-port 1234 -set-role contributor ^
-user aUser -user bUser -project Restricted

Aside from the creator of the project folder and the previous two users, no other user can
view or access any findings uploaded to Restricted.

Upload project findings under Restricted.

polyspace-access -host my-company-server -port 1234 ^
-upload C:\Polyspace_Workspace\projectName\Module_1 ^
-parent-project Restricted

 polyspace-access

1-5

The uploaded findings are stored under Restricted/projectName.

Assign Results to Component Owners and Export Assigned Results

If you follow a component-based development approach, you can assign analysis findings
by component to their respective owners.

Get a list of projects currently stored on the Polyspace Access database.

polyspace-access -host my-company-server ^
-list-project

The command outputs a list of project findings paths and their last run ID.

Connecting to https://my-company-server:9443
Connecting as jsmith
Get project list with the last Run Id
Restricted/Code_Prover_Example (Code Prover) RUN_ID 14
multimodule/vxWorks_demo (Code Prover) RUN_ID 16
public/Bug_Finder_Example (Bug Finder) RUN_ID 24
public/CP/Code_Prover_Example (Polyspace Code Prover) RUN_ID 8
public/Polyspace (Code Prover) RUN_ID 28
Command Completed

Assign all red and orange run-time error findings to the owner of all the files in
Component_A of project vxWorks_demo. Perform the same assignment for the owner of
Component_B. To specify the vxWorks_demo project, use the run ID.

polyspace-access -host my-company-server ^
-set-unassigned-findings 16 ^
-owner A_owner -source-contains Component_A ^
-owner B_owner -source-contains Component_B ^
-rte Red -rte Orange

-source-contains Component_A matches all files with a file path that contains
Component_A.

-source-contains Component_B matches all files with a file path that contains
Component_B, but excludes files with a file path that contains Component_A.

After you assign findings, export the findings and generate .csv files for each owner
containing the findings assigned to them.

1 Polyspace Bug Finder Server Commands

1-6

polyspace-access -host my-company-server ^
-export 16 ^
-output C:\Polyspace_Workspace\myResults.csv ^
-output-per-owner

The command generates file myResults.csv containing all findings from the project
with run ID 16. The command also generates files myResutls.csv.A_owner.csv and
myResults.csv.B_owner.csv on the same file path.

Migrate Projects from Metrics to Polyspace Access

If you have projects stored on a Polyspace Metrics server, you can migrate them to the
Polyspace Access database. Log in to your Metrics server to complete this operation.

Generate migration scripts for the projects you want to migrate. Specify the folder path of
the location where the projects are stored, for example C:\Users\jsmith\AppData
\Roaming\Polyspace_RLDatas\results-repository

polyspace-access -generate-migration-commands ^
C:\Users\jsmith\AppData\Roaming\Polyspace_RLDatas\results-repository ^
-output-folder-path C:\Polyspace_Workspace\toMigrate -project-date-after 2017-06

The command generates migration scripts for all projects in the specified metrics folder
that were uploaded on or after June 2017. The scripts are stored in folder
C:\Polyspace_Workspace\toMigrate.

Use the -dryrun option to check which projects will be migrated.

polyspace-access -host my-company-server ^
-migrate -option-file-path ^
C:\Polyspace_Workspace\toMigrate -dryrun

The command output contains a list of projects. Inspect it to ensure that you are
migrating the correct projects.

 polyspace-access

1-7

To perform the migration, rerun the last command without the -dryrun option.

Input Arguments
Connect and Login

hostname — Server host name
string

Fully qualified host name of the machine hosting the Polyspace Access Gateway service.
Default value is localhost.
Example: -host my-company-server

configuration options — Options to configure connection to Polyspace Access
string

Options to specify connection configuration and login credentials.

Configuration Options

Option Description
-port portNumber Port number of the Polyspace Access Gateway service. Default

value is 9443.
-protocol http |
https

HTTP protocol used to access Polyspace Access. Default value is
https.

-login username

-encryted-password
ENCRYPTED_PASSWD

Login credentials you use to interact with Polyspace Access.
The argument of -encrypted-password is the output of the -
encrypt-password command.

If you do not use these two options, you are prompted to enter
your credentials at the command line.

Miscellaneous Options

Option Description
-output file_path File path where you store command outputs

1 Polyspace Bug Finder Server Commands

1-8

Option Description
-tmp-dir
folder_path

Folder path where you store temporary files generated by the -
polyspace-access commands. Default value is tmp/
ps_results_server on Linux and C:/Users/%username%/
AppData/Local/Temp/ps_results_server on Windows.

log File path where you store the command output log. By default
the command does not generate a log file.

-h Display the help information for polyspace-access or one of
its commands.

Create New Folder

projectFolder — Name of project folder
string

Project folder path specified as a string. If the name includes spaces, use double quotes.
Specify the full path to folders nested under a parent folder.
Example: -create-project topFolder
Example: -create-project "topFolder/sub Folder"

Upload Results

pathToFolderOrZipFile — Path to folder or zipped file containing analysis
results
string

Folder or zipped file path specified as a string. The folder or zipped file contains analysis
results you want to upload to Polyspace Access. Specify the path of the folder containing
the *.psbf, *.pscp, or *.rte file, or the path of the parent of this folder to upload
multiple analysis runs.

For instance, for the Bug Finder results stored in C:\Polyspace_Workspace
\myProject\Module_1\BF_results\ps_results.psbf, specify the path to
BF_results or to Module_1. If the path name includes spaces, use double quotes.
Example: -upload C:\Polyspace_Workspace\myProject\Module_1\BF_results
Example: -upload C:\Polyspace_Workspace\myProject\Module_1\ -project
projectFolder

 polyspace-access

1-9

upload options — Options to specify where to upload results
string

Options to specify path to project folder where you upload results.

Option Description
-parent-project
projectFolder

Path of the parent project folder under which you upload
project findings. Default value is public.

-project
projectFolderOrFin
dingsPath

If the FOLDER you specify for -upload contains only one
analysis run, for instance ps_results.psbf, this option is
optional. Use -project to rename project findings, or omit it
to use the project name from your Polyspace analysis.

If the FOLDER you specify for -upload contains more than one
analysis run, or if you specify the parent folder of the results
folder, this option is mandatory. Use -project to create a
project folder under which all the analysis runs are stored.

Export Results

findingsToExport — Project findings path or run ID
string

Path or run ID of the project findings that you export. Polyspace assigns a unique run ID
to each analysis run you upload. If the path name includes spaces, use double quotes. To
get the project findings path or last run ID, use -list-project.
Example: -export "public/Examples/Bug_Finder_Example (Bug Finder)"
Example: -export 4

filePath — Path to file containing command output
string

Path to file that stores the output of command when you specify the -output option. This
option is mandatory with the -export command.
Example: -output C:\Polyspace_Workspace\myResults.txt

export options — Options to specify which findings to export
string

1 Polyspace Bug Finder Server Commands

1-10

Options to specify where to export findings, and which subset of findings you export. Use
these options to export findings to other tools you use to create custom reports or other
custom review templates.

Option Description
-output file_path File path where you export the findings. This option is

mandatory with the -export command.
-new-findings Export only new findings compared to the previous analysis

(previous upload with the same project name).
-output-per-owner Use this option to generate files that only contain findings

assigned to a particular user. The files are stored on the path
you specify with -o.

-rte color Type of RTE finding to export. Specify All, Red, Gray, Orange,
or Green.

To specify more than one argument, call the option for each
argument. For example, -rte Red -rte Orange.

-defects impact Impact of DEFECTS findings to export. Specify All, High,
Medium, or Low.

To specify more than one argument, call the option for each
argument. For example, -defects Medium -defects Low.

-custom-coding-
rules

Export all custom coding rules findings.

-coding-rules Export all coding rules findings.
-code-metrics Export all code metrics findings.
-global-variables Export all global variables findings.
-review-status
status

Review status of the findings to export. Specify New,
Unreviewed, Unassigned, Toinvestigate, Tofix,
Justified, Noactionplanned, Notadefect, Other, or
Annotated.

To specify more than one argument, call the option for each
argument. For example, -review-status Tofix -review-
status Toinvestigate.

 polyspace-access

1-11

Option Description
-severity severity Severity of the findings to export. Specify All, High, Medium,

or Low.

To specify more than one argument, call the option for each
argument. For example, -severity High -severity Low.

Assign Findings

findingsToAssign — Project findings path or run ID
string

Path or run ID of the project findings that you assign to a user. Polyspace assigns a unique
run ID to each analysis run you upload. If the path name includes spaces, use double
quotes. To get the project findings path or last run ID, use -list-project.
Example: -set-unassigned-findings "public/Examples/Bug_Finder_Example
(Bug Finder)"

Example: -set-unassigned-findings 4

userToAssign — Polyspace Access user name
string

User name of user you assign as owner of unassigned findings. To assign multiple owners,
call the option for each user.

Each call to -owner must be paired with a call to -souce-contains.
Example: -user jsmith

pattern — Pattern to match against file path
string

Pattern to match against file path of project source files. To match file paths for all source
files, use -source-contains /.

Enter a substring from the file path. You cannot use regular expressions.

When you call this option more than once, each instance excludes patterns from previous
instances. For example, -source-contains foo -source-contains bar matches all
file paths that contain foo, then all file paths that contain bar excluding paths that
contain foo.

1 Polyspace Bug Finder Server Commands

1-12

When you assign findings to multiple owners, call this option for each call to -owner.
Example: -source-contains main

set unassigned findings options — Options to specify which findings to
assign
string

Options to assign all findings or only a subset based on component or individual source
files. To make an assignment, specify a pattern to match against the folder or file paths to
assign.

Option Description
-rte color Type of RTE finding to assign. Specify All, Red, Gray, Orange,

or Green.

To specify more than one argument, call the option for each
argument. For example, -rte Red -rte Orange.

-defects impact Impact of DEFECTS findings to assign. Specify All, High,
Medium, or Low.

To specify more than one argument, call the option for each
argument. For example, -defects Medium -defects Low.

-custom-coding-
rules

Assign all custom coding rules findings.

-coding-rules Assign all coding rules findings.
-code-metrics Assign all code metrics findings.
-global-variables Assign all global variables findings.
-review-status
status

Review status of the findings to assign. Specify New,
Unreviewed, Unassigned, Toinvestigate, Tofix,
Justified, Noactionplanned, Notadefect, Other, or
Annotated.

To specify more than one argument, call the option for each
argument. For example, -review-status Tofix -review-
status Toinvestigate.

 polyspace-access

1-13

Option Description
-severity severity Severity of the findings to assign. Specify All, High, Medium,

or Low.

To specify more than one argument, call the option for each
argument. For example, -severity High -severity Low.

-dryrun Display command output without making any assignment. Use
this option to check that your assignments are correct.

List Projects

findingsPath — Project findings path
string

Path of the project findings. Specify this optional argument with -list-project to get
the path and the last run ID of the corresponding project findings. If the path name
includes spaces, use double quotes.
Example: -list-project "public/Examples/Bug_Finder_Example (Bug
Finder)"

Set and Unset User Roles

role — Level of access permissions for project folder or findings
owner | contributor | forbidden

Level of access to project folder and findings for a user.

• owner: User can move, rename, or delete specified project folders or findings and
review their content.

• contributor: User can review content of specified project folder or findings.
• forbidden: User cannot access specified project folder or findings. Set this role to

restrict the access of a user to a set of project findings inside a project folder that is
accessible to the user.

Example: -set-role contributor

username — Polyspace Access user name
string

Polyspace Access user name.

1 Polyspace Bug Finder Server Commands

1-14

Example: -user jsmith

projectFolderOrFindingsPath — Project folder or findings path
string

Path of a project folder or project findings. When projectFolderOrFindingsPath is
the path to a project folder, the user role you set applies to all subfolders and project
findings under that folder. If the path name includes spaces, use double quotes. To get the
project folder or findings path, use -list-project.
Example: -project-path "public/Examples/Bug_Finder_Example (Bug
Finder)"

Example: -project-path public

Migrate Results from Metrics to Polyspace Access

metrics_dir — Folder path of Polyspace Metrics projects
string

Path of folder containing the Polyspace Metrics projects you want to migrate to Polyspace
Access.
Example: -generate-migration-commands C:\Users\%username%\AppData
\Roaming\Polyspace_RLDatas\results-repository

dir — Output folder for migration scripts
string

Path to folder that stores the output of -generate-migration-commands. Do not
specify an existing folder.
Example: local/Polyspace_Workspace/migration_scripts

generate migration commands options — Options to specify which projects to
migrate
string

Option Description
-output-folder-
path dir

Folder path where you want to store the generated command
files. Do not specify an existing folder.

 polyspace-access

1-15

Option Description
-max-project-runs
int

Number of most recent analysis runs you want to migrate for
each project. For instance, to migrate only the last two analysis
runs of a project, specify 2.

-project-date-
after YYYY[-MM[-
DD]]

Only migrate results that were uploaded to Polyspace Metrics
on or after the specified date.

-product
productName

Product used to analyze and produce project findings, specified
as bug-finder, code-prover, or polyspace-ada.

-analysis-mode
mode

Analysis mode use to generate project findings, specified as
integration or unit-by-unit.

See Also

Topics
“Run Polyspace Bug Finder on Server and Upload Results to Web Interface”
“Send E-mail Notifications with Polyspace Bug Finder Results”

Introduced in R2018b

1 Polyspace Bug Finder Server Commands

1-16

polyspace-bug-finder-server Command
(DOS/UNIX) Run a Bug Finder analysis on a server from the DOS or UNIX command line

Syntax
polyspace-bug-finder-server
polyspace-bug-finder-server -sources sourceFiles [OPTIONS]

polyspace-bug-finder-server -sources-list-file listOfSources
[OPTIONS]

polyspace-bug-finder-server -options-file optFile

polyspace-bug-finder-server -h[elp]

Description
polyspace-bug-finder-server [OPTIONS] runs a Bug Finder analysis on a server if
your current folder contains a sources subfolder with source files (.c or .cxx files). The
analysis considers files in sources and all subfolders under sources.

polyspace-bug-finder-server -sources sourceFiles [OPTIONS] runs a Bug
Finder analysis on a server on the source file(s) sourceFiles. You can customize the
analysis with additional options.

polyspace-bug-finder-server -sources-list-file listOfSources
[OPTIONS] runs a Bug Finder analysis on a server on the source files listed in the text
file listOfSources. You can customize the analysis with additional options. Using a
sources list file is recommended when you have many source files. By keeping the list of
sources in a text file, the command is shorter and updates to the list are easier.

polyspace-bug-finder-server -options-file optFile runs a Bug Finder
analysis on a server with the options specified in the option file. When you have many
analysis options, an options file makes it easier to run the same analysis again.

polyspace-bug-finder-server -h[elp] lists a summary of possible analysis
options.

 polyspace-bug-finder-server Command

1-17

Examples

Run Analysis by Directly Specifying Options

Run a Bug Finder analysis on a server by specifying analysis options in the run command
itself. This example uses source files from a demo Polyspace Bug Finder example. To run
this example, replace polyspaceroot with the path to your Polyspace installation, for
example C:\Program Files\Polyspace\R2019a.

Run an analysis on numerical.c and programming.c, checking for MISRA C:2012
mandatory rules, programming and numerical defects, and using GNU 4.7 compiler
settings. This example command is split by ^ characters for readability. In practice, you
can put all commands on one line.

polyspaceroot\polyspace\bin\polyspace-bug-finder-server^
 -sources ^
polyspaceroot\polyspace\examples\cxx\Bug_Finder_Example\sources\numerical.c,^
polyspaceroot\polyspace\examples\cxx\Bug_Finder_Example\sources\programming.c ^
-compiler gnu4.7 -misra3 mandatory -checkers numerical,programming ^
-author jlittle -prog myProject -results-dir C:\Polyspace_Workspace\Results\

After analysis, you can upload the results to the Polyspace Bug Finder Access™ interface
for review. See:

• polyspace-access
• “Run Polyspace Bug Finder on Server and Upload Results to Web Interface”

Run Analysis with Options File

Run a Bug Finder analysis on a server by specifying analysis options with an options file.
This example uses source files from a demo Polyspace Bug Finder example. To run this
example, replace polyspaceroot with the path to your Polyspace installation, for
example C:\Program Files\Polyspace\R2019a.

Save this text to a text file called myOptionsFile.txt.

Options for analyzing numerical.c and programming.c
-sources polyspaceroot\polyspace\examples\cxx\Bug_Finder_Example\sources\numerical.c
-sources polyspaceroot\polyspace\examples\cxx\Bug_Finder_Example\sources\programming.c

1 Polyspace Bug Finder Server Commands

1-18

-compiler gnu4.7
-misra3 mandatory
-checkers numerical,programming
-author jlittle
-prog myProject
-results-dir C:\Polyspace_Workspace\Results\

Run the analysis with the options specified in the text file.

polyspaceroot\polyspace\bin\polyspace-bug-finder-server -options-file myOptionsFile.txt

After analysis, you can upload the results to the Polyspace Bug Finder Access interface
for review. See:

• polyspace-access
• “Run Polyspace Bug Finder on Server and Upload Results to Web Interface”

Input Arguments
sourceFiles — Comma-separated names of C or C++ files to analyze
-sources string

Comma-separated C or C++ source file names, specified as -sources followed by a
string. If the files are not in the current folder (pwd), sourceFiles must include a full or
relative path. To avoid errors because of paths with spaces, add quotes " " around the
path. For more information, see -sources.

If your current folder contains a sources subfolder with the source files, you can omit
the -sources flag. The analysis considers files in sources and all subfolders under
sources.
Example: -sources myFile.c, -sources C:\mySources
\myFile1.c,C:\mySources\myFile2.c

listOfSources — Text file listing names of C or C++ files to analyze
-sources-list-file file

Text file which lists the name of C or C++ files, specified as -sources-list-file
followed by the file. If the files are not in the current folder (pwd), listOfSources must
include a full or relative path. To avoid errors because of paths with spaces, add quotes "
" around the path. For more information, see -sources-list-file.

 polyspace-bug-finder-server Command

1-19

Example: -sources-list-file filename.txt, -sources-list-file
"C:\ps_analysis\source_files.txt"

[OPTIONS] — Analysis option and corresponding value
option syntax

Analysis options and their corresponding values, specified by the option name and if
applicable value. For syntax specifications, see the individual analysis option reference
pages.
Example: -lang C-CPP -compiler diab

optFile — Text file listing analysis options and values
-options-file file

Text file listing analysis options and values, specified as -options-file followed by the
file. For more information, see -options-file.
Example: -options-file opts.txt, -options-file "C:\ps_analysis
\options.txt"

See Also

Topics
“Run Polyspace Bug Finder on Server and Upload Results to Web Interface”
“Prepare Scripts for Polyspace Analysis”
“Analysis Options”

Introduced in R2019a

1 Polyspace Bug Finder Server Commands

1-20

polyspace-configure
(DOS/UNIX) Create Polyspace project from your build system at the DOS or UNIX
command line

Syntax
polyspace-configure buildCommand

polyspace-configure [OPTIONS] buildCommand

Description
polyspace-configure buildCommand traces your build system and creates a
Polyspace project with information gathered from your build system.

polyspace-configure [OPTIONS] buildCommand traces your build system and
uses -option value to modify the default operation of polyspace-configure.
Specify the modifiers before buildCommand, otherwise they are considered as options in
the build command itself.

Examples

Create Polyspace Project from Makefile

This example shows how to create a Polyspace project if you use the command make
targetName buildOptions to build your source code.

Create a Polyspace project specifying a unique project name. Use the -B or -W
makefileName option with make so that the all prerequisite targets in the makefile are
remade.

polyspace-configure -prog myProject \
make -B targetName buildOptions

 polyspace-configure

1-21

Open the Polyspace project in the Polyspace user interface.

Create Projects That Have Different Source Files from Same Build Trace

This example shows how to create different Polyspace projects from the same trace of
your build system. You can specify which source files to include for each project.

Trace your build system without creating a Polyspace project by specifying the option -
no-project. To ensure that all the prerequisite targets in your makefile are remade, use
the appropriate make build command option, for instance -B.

polyspace-configure -no-project make -B

polyspace-configure stores the cache information and the build trace in default
locations inside the current folder. To store the cache information and build trace in a
different location, specify the options -cache-path and -build-trace.

Generate Polyspace projects by using the build trace information from the previous step.
Specify a project name and use the -include-sources or -exclude-sources option
to select which files to include for each project.

polyspace-configure -no-build -prog myProject \
-include-sources "glob_pattern"

glob_pattern is a glob pattern that corresponds to folders or files you filter in or out of
your project. To ensure the shell does not expand the glob patterns you pass to
polyspace-configure, enclose them in double quotes. For more information on the
supported syntax for glob patterns, see “polyspace-configure Source Files Selection
Syntax”.

If you specified the options -build-trace and -cache-path in the previous step,
specify them again.

Delete the trace file and cache folder.

rm -r polyspace_configure_cache polyspace_configure_built_trace

If you used the options -build-trace and -cache-path, use the paths and file names
from those options.

1 Polyspace Bug Finder Server Commands

1-22

Run Command-Line Polyspace Analysis from Makefile

This example shows how to run Polyspace analysis if you use the command make
targetName buildOptions to build your source code. In this example, you use
polyspace-configure to trace your build system but do not create a Polyspace project.
Instead you create an options file that you can use to run Polyspace analysis from
command-line.

Create a Polyspace options file specifying the -output-options-file command. Use
the -B or -W makefileName option with make so that all prerequisite targets in the
makefile are remade.

polyspace-configure -output-options-file\
 myOptions make -B targetName buildOptions

Use the options file that you created to run a Polyspace analysis at the command line:

Input Arguments
buildCommand — Command for building source code
build command

Build command specified exactly as you use to build your source code.
Example: make -B, make -W makefileName

[OPTIONS] — Options for changing default operation of polyspace-configure
single option starting with -, followed by argument | multiple space-separated option-
argument pairs

Basic Options

 polyspace-configure

1-23

Option Argument Description
-prog Project name Project name that appears in the Polyspace user

interface. The default is polyspace.

If you do not use the option -output-project,
the -prog argument also sets the project name.

Example: -prog myProject creates a project
that has the name myProject in the user
interface. If you do not use the option -
output-project, the project name is also
myProject.psrprj.

-author Author name Name of project author.

Example: -author jsmith
-output-project Path Project file name and location for saving

project. The default is the file
polyspace.psprj in the current folder.

Example: -output-project ../
myProjects/project1 creates a project
project1.psprj in the folder with the relative
path ../myProjects/.

-output-options-file File name Option to create a Polyspace analysis options
file. Use this file for command-line analysis
using polyspace-bug-finder-server.

-allow-build-error None Option to create a Polyspace project even if an
error occurs in the build process.

If an error occurs, the build trace log shows the
following message:

polyspace-configure ERROR: build command
 command_name fail [status=status_value]

command_name is the build command name
that you use and status_value is the non-zero
exit status or error level that indicates which
error occurred in your build process.

1 Polyspace Bug Finder Server Commands

1-24

Option Argument Description
-allow-overwrite None Option to overwrite a project with the same

name, if it exists.

By default, polyspace-configure throws an
error if a project with the same name already
exists in the output folder. Use this option to
overwrite the project.

-silent (default)

-verbose

None Option to suppress or display additional
messages from running polyspace-
configure.

-help None Option to display the full list of polyspace-
configure commands

-debug None Option used by MathWorks® technical support

Options to Create Multiple Modules

Option Argument Description
-module None Option to create a separate options file for each

binary created in build system.

You can only create separate options files for
different binaries. You cannot create multiple
modules in a Polyspace project (for running in
the Polyspace user interface).

Use this option only for build systems that use
GNU® and Visual C++® compilers.

See also “Modularize Polyspace Analysis by
Using Build Command”.

-output-options-path Path name Location where generated options files are
saved. Use this option together with the option
-module.

The options files are named after the binaries
created in the build system.

Advanced Options

 polyspace-configure

1-25

Option Argument Description
-compiler-config Path and file name Location and name of compiler configuration

file.

The file must be in a specific format. For
guidance, see the existing configuration files in
polyspaceroot\polyspace\configure\
compiler_configuration\. For information
on the contents of the file, see “Create
Polyspace Analysis Configuration from Build
Command”.

Example: -compiler-configuration
myCompiler.xml

-no-project None Option to trace your build system without
creating a Polyspace project and save the build
trace information.

Use this option to save your build trace
information for a later run of polyspace-
configure with the -no-build option.

-no-build None Option to create a Polyspace project using
previously saved build trace information.

To use this option, you must have the build
trace information saved from an earlier run of
polyspace-configure with the -no-
project option.

If you use this option, you do not need to specify
the buildCommand argument.

1 Polyspace Bug Finder Server Commands

1-26

Option Argument Description
-no-sources None Option to create a Polyspace options file that

does not contain the source file specifications.

Use this option when you intend to specify the
source files by other means. For instance, you
can use this option when:

• Running Polyspace on AUTOSAR-specific
code.

You want to create an options file that traces
your build command for the compiler
options:

-output-options-file options.txt -no-sources

You later append this options file when
extracting source file names from ARXML
specifications and running the subsequent
Code Prover analysis with polyspace-
autosar

-extra-options-file options.txt

See also “Create Polyspace Analysis
Configuration from AUTOSAR
Specifications” (Polyspace Code Prover
Server).

• Running Polyspace in Eclipse™.

Your source files are already specified in
your Eclipse project. When running a
Polyspace analysis, you want to specify an
options file that has the compilation options
only.

 polyspace-configure

1-27

Option Argument Description
-extra-project-options Options to use for

subsequent
Polyspace analysis.
For instance, "-
stubbed-
pointers-are-
unsafe".

Options that are used for subsequent Polyspace
analysis.

Once a Polyspace project is created, you can
change some of the default options in the
project. Alternatively, you can pass these
options when tracing your build command. The
flag -extra-project-options allows you to
pass additional options.

Specify multiple options in a space separated
list, for instance "-allow-negative-
operand-in-shift -stubbed-pointers-
are-unsafe".

Suppose you have to set the option -stubbed-
pointers-are-unsafe for every Polyspace
project created. Instead of opening each project
and setting the option, you can use this flag
when creating the Polyspace project:

-extra-project-options
 "-stubbed-pointers-are-unsafe"

For the list of options available, see:

• “Analysis Options”
•

If you are creating an options file instead of a
Polyspace project from your build command, do
not use this flag.

-tmp-path Path Location of folder where temporary files are
stored.

1 Polyspace Bug Finder Server Commands

1-28

Option Argument Description
-build-trace Path and file name Location and name of file where build

information is stored. The default is ./
polyspace_configure_build_trace.log.

Example: -build-trace ../build_info/
trace.log

-include-sources

-exclude-sources

Glob pattern Option to specify which source files
polyspace-configure includes in, or
excludes from, the generated project. You can
combine both options together.

A source file is included if the file path matches
the glob pattern that you pass to -include-
sources.

A source file is excluded if the file path matches
the glob pattern that you pass to -exclude-
sources.

-print-included-sources

-print-excluded-sources

None Option to print the list of source files that
polyspace-configure includes in, or
excludes from, the generated project. You can
combine both options together. The output
displays the full path of each file on a separate
line.

Use this option to troubleshoot the glob
patterns that you pass to -include-sources
or -exclude-sources. You can see which files
match the pattern that you pass to -include-
sources or -exclude-sources.

Cache Control Options

 polyspace-configure

1-29

Option Argument Description
-no-cache

-cache-sources (default)

-cache-all-files

None Option to perform one of the following:

• Not create a cache
• Cache only source and header files.
• Cache all files including binaries.

-cache-path Path Location of folder where cache information is
stored.

Example: -cache-path ../cache
-keep-cache

-no-keep-cache (default)

None Option to preserve or clean up cache
information after polyspace-configure
completes execution.

If polyspace-configure fails, you can
provide this cache information to technical
support for debugging purposes.

See Also

Topics
“Create Polyspace Analysis Configuration from Build Command”
“Modularize Polyspace Analysis by Using Build Command”

Introduced in R2013b

1 Polyspace Bug Finder Server Commands

1-30

polyspace-report-generator
(DOS/UNIX) Generate reports for Polyspace analysis results stored locally or on Polyspace
Acces

Syntax
polyspace-report-generator -template <template> [OPTIONS]
polyspace-report-generator -generate-results-list-file [-results-dir
<FOLDER>] [-set-language-english]
polyspace-report-generator -generate-variable-access-file [-results-
dir <FOLDER>] [-set-language-english]

polyspace-report-generator -template <template> -host <HOSTNAME> -
run-id <RUN_ID> [ACCESS_OPTIONS] [OPTIONS]
polyspace-report-generator -generate-results-list-file -host <
HOSTNAME> -run-id <RUN_ID> [ACCESS_OPTIONS] [-set-language-english]
polyspace-report-generator -generate-variable-access-file -host <
HOSTNAME> -run-id <RUN_ID> [ACCESS_OPTIONS] [-set-language-english]

Description
polyspace-report-generator -template <template> [OPTIONS] generates a
report by using TEMPLATE for the local analysis results that you specify with OPTIONS.

By default, reports for results from project-name are stored as project-
name_report-name in the PathToFolder\Polyspace-Doc folder. PathToFolder is
the results folder of project-name.

polyspace-report-generator -generate-results-list-file [-results-dir
<FOLDER>] [-set-language-english]exports the analysis results stored locally in
FOLDER to a tab-delimited text file. The file contains the result information available on
the Results List pane in the user interface. For more information on the exported results
list, see “View Exported Results” (Polyspace Bug Finder).

By default, the results file for results from project-name is stored in the PathToFolder
\Polyspace-Doc folder. PathToFolder is the results folder of project-name.

 polyspace-report-generator

1-31

polyspace-report-generator -generate-variable-access-file [-results-
dir <FOLDER>] [-set-language-english]exports the list of global variables in your
code from the Code Prover analysis stored locally in FOLDER to a tab-delimited text file.
The file contains the information available on the Variable Access pane in the user
interface. For more information on the exported variables list, see “Global Variables”
(Polyspace Code Prover Access).

By default, the variables file for results from project-name is stored in the
PathToFolder\Polyspace-Doc folder. PathToFolder is the results folder of
project-name.

polyspace-report-generator -template <template> -host <HOSTNAME> -
run-id <RUN_ID> [ACCESS_OPTIONS] [OPTIONS] generates a report by using
TEMPLATE for the analysis results run RUN_ID stored on Polyspace Access. HOSTNAME is
the fully qualified host name of the machine that hosts Polyspace Access.

By default, reports for results from project-name are stored as project-
name_report-name in the PathToFolder\Polyspace-Doc folder. PathToFolder is
the path from which you call the command.

polyspace-report-generator -generate-results-list-file -host <
HOSTNAME> -run-id <RUN_ID> [ACCESS_OPTIONS] [-set-language-
english]exports the analysis results run RUN_ID stored on Polyspace Access to a tab-
delimited text file. The file contains the result information available on the Results List
pane in the Polyspace Access web interface. HOSTNAME is the fully qualified host name of
the machine that hosts Polyspace Access. For more information on the exported results
list, see “Results List” (Polyspace Bug Finder Access).

By default, the results file for results from project-name is stored in the PathToFolder
\Polyspace-Doc folder. PathToFolder is the path from which you call the command.

polyspace-report-generator -generate-variable-access-file -host <
HOSTNAME> -run-id <RUN_ID> [ACCESS_OPTIONS] [-set-language-
english]exports the list of global variables in your code from the Code Prover analysis
run RUN_ID stored on Polyspace Access to a tab-delimited text file. The file contains the
information available on the Variable Access pane in the Polyspace Access web
interface. HOSTNAME is the fully qualified host name of the machine that hosts Polyspace
Access. For more information on the exported variables list, see “View Exported Variable
List” (Polyspace Code Prover).

1 Polyspace Bug Finder Server Commands

1-32

By default, the variables file for results from project-name is stored in the
PathToFolder\Polyspace-Doc folder. PathToFolder is the path from which you call
the command.

Input Arguments
template — path to report template file
string

Path to the report template that you use to generate an analysis report. To generate
multiple reports, specify a comma-separated list of report template paths (do not put a
space after the commas). The templates are available in polyspaceroot\toolbox
\polyspace\psrptgen\templates\ as .rpt files. Here, polyspaceroot is the
Polyspace installation folder. For more information on the available templates, see Bug
Finder and Code Prover report (-report-template).

This option is not compatible with -generate-variable-access-file and -
generate-results-list-file.
Example: C:\Program Files\Polyspace\R2019a\toolbox\polyspace\psrptgen
\templates\Developer.rpt

Example: TEMPLATE_PATH\BugFinder.rpt,TEMPLATE_PATH\CodingStandards.rpt

FOLDER — Analysis results folder path
string

Path to the folder containing analysis results for which you generate a report, or analysis
results from which you export a list of results or global variables (Code Prover). To
generate a report for multiple verifications, specify a comma-separated list of folder paths
(do not put a space after the commas). If you do not specify a folder path, the command
generates a report for analysis results in the current folder.
Example: C:\Polyspace_Workspace\My_project\Module_1\results
Example: C:\Polyspace_Workspace\My_project
\Module_2\results,C:\Polyspace_Workspace\My_project
\Module_3\other_results

HOSTNAME — Polyspace Access machine host name
string

 polyspace-report-generator

1-33

Fully qualified host name of the machine that hosts the Polyspace Access Gateway API
service. You must specify a host name to generate a report for results on the Polyspace
Access database.
Example: my-company-server

RUN_ID — Polyspace Access run ID
integer

Run ID of the project findings for which you generate a report. Polyspace assigns a
unique run ID to each analysis run that you upload to the Polyspace Access. To get the
run ID of project findings, use the command polyspace-access with option -list-
project.
Example: 4

OPTIONS — Options for generated report
string

Option Description
-format HTML | PDF | WORD File format of the report that you generate.

By default, the command generates a
WORD document.

To generate reports in multiple formats,
specify a comma-separated list of formats.
(Do not put a space after the commas). For
instance, -format PDF,HTML.

This option is not compatible with -
generate-variable-access-file and
-generate-results-list-file.

-output-name outputName Name of the generated report or folder
name if you generate multiple reports.

The command stores outputName on the
path from which you call the command. To
store the generated files in a different
folder, specify the full path of the folder, for
instance -output-name C:\PathTo
\OtherFolder.

1 Polyspace Bug Finder Server Commands

1-34

Option Description
-results-dir
FOLDER_1,...,FOLDER_N

Path to the locally stored results folder. To
generate reports for multiple analyses,
specify a comma-separated list of folder
path. (Do not put a space after the
commas). For example:

-results-dir folderPath1,folderPath2

-set-language-english Generate the report in English. Use this
option if your display language is set to
another language.

-h Display the help information.

ACCESS_OPTIONS — Options for Polyspace Access
string

Option Description
-host HOST_NAME Fully qualified host name of the machine

that hosts the Polyspace Access Gateway
API service.

This option is mandatory when you
generate reports for results stored on the
Polyspace Access database.

-run-id RUN_ID Run ID of the project. Polyspace assigns a
unique run ID to each analysis run that you
upload. To get the last run ID of a project,
use the -list-project option of the
polyspace-access command.

For more information on the command, see
polyspace-access.

This option is mandatory when you
generate reports for results stored on the
Polyspace Access database.

 polyspace-report-generator

1-35

Option Description
-all-units Specify this option to generate a report for

all units from a unit by unit analysis.

When you use this option, specify the run
ID of only one unit with -run-id. The
command includes the other units from the
analysis in the report.

-port portNumber Port number of the Polyspace Access
instance. Default value is 9443.

-protocol http | https HTTP protocol used to connect to Polyspace
Access. Default value is https.

-login username

-encryted-password
ENCRYPTED_PASSWD

Credentials that you use to log into
Polyspace Access. The argument of -
encrypted-password is the output of the
polyspace-access -encrypt-
password command.

For more information on the command, see
polyspace-access.

Examples

Generate PDF Reports for Analysis Results Stored Locally

You can generate multiple reports for analysis results that you store locally.

Create a variable template_path to store the path to the report templates and create a
variable report_templates to store a comma-separated list of templates to use.

SET template_path="C:\Program Files"\Polyspace\R2019a\toolbox\polyspace^
\psrptgen\templates\bug_finder
SET report_templates=%template_path%\BugFinder.rpt,^
%template_path%\CodingStandards.rpt

Generate the reports from the templates that you specified in report_templates for
analysis results of Polyspace project myProject.

1 Polyspace Bug Finder Server Commands

1-36

 polyspace-report-generator -template %report_templates% ^
-results-dir C:\Polyspace_Workspace\myProject\Module_1\BF_Result ^
-format PDF

The command generates two PDF reports, myProject_BugFinder.PDF and
myProject_CodingStandards.PDF. The reports are stored in
C:\Polyspace_Workspace\myProject\Module_1\BF_Result\Polyspace-Doc. For
more information on the content of the reports, see Bug Finder and Code Prover
report (-report-template).

Generate Report and Variables List from Polyspace Access

Note To use the command-line for generating reports of results stored on Polyspace
Access, you must have a Polyspace Bug Finder Server or Polyspace Code Prover™ Server
installation.

Suppose that you want to generate a report and export the variables list for the results of
a Code Prover analysis stored on the Polyspace Access database.

To connect to Polyspace Access, provide a host name and your login credentials including
your encrypted password. To encrypt your password, use the polyspace-access
command and enter your user name and password at the prompt.

polyspace-access -encrypt-password
login: jsmith
password:
CRYPTED_PASSWORD LAMMMEACDMKEFELKMNDCONEAPECEEKPL
Command Completed

Store your Polyspace Access login credentials in a variable LOGIN.

set LOGIN=-host jsmith ^
-encrypted-password LAMMMEACDMKEFELKMNDCONEAPECEEKPL

To specify project results on the Polyspace Access, specify the run ID of the project. To
obtain a list of projects with their latest run ID, use the polyspace-access with option
-list-project.

 polyspace-report-generator

1-37

polyspace-access -host myAccessServer %LOGIN% -list-project
Connecting to https://myAccessServer:9443
Connecting as jsmith
Get project list with the last Run Id
Restricted/Code_Prover_Example (Code Prover) RUN_ID 14
public/Bug_Finder_Example (Bug Finder) RUN_ID 24
public/CP/Code_Prover_Example (Polyspace Code Prover) RUN_ID 16
public/Polyspace (Code Prover) RUN_ID 28
Command Completed

For more information on the command, see polyspace-access.

Generate a Developer report for results with run ID 16 from the Polyspace Access
instance with host name myAccessServer. The URL of this instance of Polyspace Access
is https://myAccessServer:9443.

SET template_path=^
"C:\Program Files\Polyspace\R2019a\toolbox\polyspace\psrptgen\templates"

polyspace-report-generator %LOGIN% ^
-template %template_path%\Developer.rpt ^
-host myAccessServer ^
-run-id 16 ^
-output-name myReport

The command creates report myReport.docx by using the template that you specify. The
report is stored in folder Polyspace-Doc on the path from which you called the
command.

Generate a tab-delimited text file that contains a list of global variables in your code for
the specified analysis results.

polyspace-report-generator %LOGIN%^
-generate-variable-access-file ^
-host myAccessServer ^
-run-id 16

1 Polyspace Bug Finder Server Commands

1-38

The list of global variables Variable_View.txt is stored in the same folder as the
generated report. For more information on the exported variables list, see “Global
Variables” (Polyspace Code Prover Access).

See Also

 polyspace-report-generator

1-39

polyspace-comments-import
(DOS/UNIX) Import review information from previous Polyspace analysis

Syntax
polyspace-comments-import -diff-rte prevResultsFolder
currentResultsFolder

Description
polyspace-comments-import -diff-rte prevResultsFolder
currentResultsFolder imports review information from a results file in
prevResultsFolder to currentResultsFolder. The review information includes the
severity, status and comments that you assign to a result. Besides importing the
comments, the command also shows the number of results where review information
could not be imported either because the result changed or the result already had new
review information.

Examples

Import Comments from Previous Polyspace Results

Run Bug Finder on a sample file and add some review information. Then, run Bug Finder
a second time and import comments from the previous run.

Copy the file numerical.c from polyspaceroot\polyspace\examples\cxx
\Bug_Finder_Example\sources to a writable folder. Open a command window and
navigate to the folder (using cd). Run Bug Finder on the file and save results in the
subfolder Run_1:

polyspace-bug-finder -sources numerical.c -results-dir Run_1/

Depending on the product installed, you can also run polyspace-code-prover,
polyspace-bug-finder-server or polyspace-code-prover-server.

1 Polyspace Bug Finder Server Commands

1-40

Open the results file in the Run_1 subfolder:

polyspace Run_1/ps_results.psbf

Select a result. On the Result Details window, select a Severity and Status and add a
comment. You will import this review information to results from a later analysis.

Run Bug Finder again, but save the results in a different subfolder Run_2:

polyspace-bug-finder -sources numerical.c -results-dir Run_2/

You can open the results file in Run_2 and see that there is no review information.

Import comments from the results file in the Run_1 subfolder to the Run_2 subfolder:

polyspace-comments-import -diff-rte Run_1/ Run_2/

Open the results file in the Run_2 subfolder:

polyspace Run_2/ps_results.psbf

You see the review information imported from the results file in the Run_1 subfolder.

Input Arguments
prevResultsFolder — Folder containing previous Polyspace results with review
comments
string

Path to a folder containing a Polyspace results file (.psbf file for Bug Finder results
and .pscp file for Code Prover results). The results are presumably from an earlier
Polyspace analysis and contain review information that will be imported to a later results
file.
Example: "C:\Polyspace\Project_1_Run_25"

currentResultsFolder — Folder containing later Polyspace results
string

Path to a folder containing Polyspace results (.psbf file for Bug Finder results and .pscp
file for Code Prover results). The results are presumably from a later Polyspace analysis

 polyspace-comments-import

1-41

and have no comments or new comments. You want to import review comments from an
earlier Polyspace analysis to these results.
Example: "C:\Polyspace\Project_1_Run_26"

See Also
-import-comments

Topics
“Import Comments from Previous Polyspace Analysis”

Introduced in R2013b

1 Polyspace Bug Finder Server Commands

1-42

polyspaceroot
Get Polyspace installation folder

Syntax
polyspaceroot

Description
polyspaceroot returns the Polyspace installation folder.

Starting in R2019a, to run MATLAB® scripts for Polyspace analysis, you install MATLAB
and Polyspace in separate folders and link between them. After installation and linking, to
access files in the Polyspace installation folder from MATLAB, use this function. See also
“Integrate Polyspace Server Products with MATLAB and Simulink”.

Examples

Get Polyspace Installation Folder

To determine the Polyspace installation folder, use the polyspaceroot function.

polyspaceroot

C:\Program Files\Polyspace\R2019a

With the products, Polyspace Bug Finder Server or Polyspace Code Prover Server, the
default installation folder in Windows® is:

C:\Program Files\Polyspace Server\R2019a

 polyspaceroot

1-43

Run Polyspace on Sample Files in Polyspace Installation Folder

To access sample files in the Polyspace installation folder, use the polyspaceroot
function to get the root of the installation folder. Append subfolders to the root folder path
with the fullfile function.

Run Bug Finder on the file numerical.c in the subfolder polyspace\examples\cxx
\Bug_Finder_Example\sources of the Polyspace installation folder.

proj = polyspace.Project

% Specify sources and includes
sourceFile = fullfile(polyspaceroot, 'polyspace', ...
 'examples', 'cxx', 'Bug_Finder_Example', 'sources', 'numerical.c');
includeFolder = fullfile(polyspaceroot, 'polyspace', ...
 'examples', 'cxx', 'Bug_Finder_Example', 'sources');

% Configure analysis
proj.Configuration.Sources = {sourceFile};
proj.Configuration.TargetCompiler.Compiler = 'gnu4.9';
proj.Configuration.EnvironmentSettings.IncludeFolders = {includeFolder};
proj.Configuration.ResultsDir = fullfile(pwd,'results');

% Run analysis
bfStatus = proj.run('bugFinder');

See Also
polyspace.Project

Topics
“Integrate Polyspace Server Products with MATLAB and Simulink”

Introduced in R2019a

1 Polyspace Bug Finder Server Commands

1-44

polyspaceBugFinderServer
Run analysis with Polyspace Bug Finder Server using MATLAB scripts

Note For easier scripting, run Polyspace® analysis using a polyspace.Project object.

Syntax
polyspaceBugFinderServer(optsObject)

polyspaceBugFinderServer('-help')

polyspaceBugFinderServer('-sources',sourceFiles)
polyspaceBugFinderServer('-sources',sourceFiles,Name,Value)

Description
polyspaceBugFinderServer(optsObject) runs an analysis on the Polyspace options
object in MATLAB.

polyspaceBugFinderServer('-help') displays options that can be supplied to the
polyspaceBugFinderServer command to run an analysis with Polyspace Bug Finder
Server.

polyspaceBugFinderServer('-sources',sourceFiles) runs an analysis with
Polyspace Bug Finder Server on the source files specified in sourceFiles.

polyspaceBugFinderServer('-sources',sourceFiles,Name,Value) runs an
analysis with Polyspace Bug Finder Server on the source files with additional options
specified by one or more Name,Value pair arguments.

Note Before you run Polyspace from MATLAB, you must link your Polyspace and
MATLAB installations. See “Integrate Polyspace Server Products with MATLAB and
Simulink”.

 polyspaceBugFinderServer

1-45

Examples

Run Polyspace Analysis with Options Object

This example shows how to run a Polyspace analysis from the MATLAB command-line. For
this example:

• Save a C source file, source.c, in the folder C:\Polyspace_Sources.
• Save an include file in the folder C:\Polyspace_Includes.

Create an options object and add the source file and include folder to the properties.

opts = polyspace.BugFinderOptions;
opts.Sources = {'C:\Polyspace_Sources\source.c'};
opts.EnvironmentSettings.IncludeFolders = {'C:\Polyspace_Includes'};
opts.ResultsDir = 'C:\Polyspace_Results';

Polyspace runs on the file C:\Polyspace_Sources\source.c and stores the result in
C:\Polyspace_Results.

Run the analysis with Polyspace Bug Finder Server.

polyspaceBugFinderServer(opts);

Run Polyspace Analysis from MATLAB with DOS/UNIX Options

This example shows how to run a Polyspace analysis in MATLAB. For this example:

• Save a C source file, source.c, in the folder C:\Polyspace_Sources.
• Save an include file in the folder C:\Polyspace_Includes.

To analyze C:\Polyspace_Sources\source.c, run the following command.

polyspaceBugFinderServer('-sources','C:\Polyspace_Sources\source.c', ...
 '-I','C:\Polyspace_Includes', ...
 '-results-dir','C:\Polyspace_Results')

1 Polyspace Bug Finder Server Commands

1-46

Run Polyspace Analysis with Coding Rules Checking

This example shows two different ways to customize an analysis in MATLAB. You can
customize as many additional options as you want by changing properties in an options
object or by using Name-Value pairs. Here you specify checking of MISRA C® 2012 coding
rules.

Create variables to save the source file path and results folder path. You can use these
variables for either analysis method.

sourceFileName = fullfile(polyspaceroot, 'polyspace','examples', 'cxx', ...
 'Bug_Finder_Example','sources','dataflow.c');
resFolder1 = fullfile('Polyspace_Results_1');
resFolder2 = fullfile('Polyspace_Results_2');

Analyze coding rules with an options object.

opts = polyspace.BugFinderOptions();
opts.Sources = {sourceFileName};
opts.ResultsDir = resFolder1;
opts.CodingStandards.MisraC3Subset = 'all';
opts.CodingStandards.EnableMisraC3 = true;
polyspaceBugFinderServer(opts);

Analyze coding rules with DOS/UNIX options.

polyspaceBugFinderServer('-sources',sourceFileName,'-results-dir',resFolder2,...
 '-misra3','all');

Input Arguments
optsObject — Polyspace options object name
object handle

Polyspace options object name, specified as the object handle.

To create an options object, use one of the Polyspace options classes
polyspace.Options or polyspace.Project.
Example: opts

sourceFiles — Comma-separated names of C or C++ files
character vector

 polyspaceBugFinderServer

1-47

Comma-separated C or C++ source file names, specified as a single character vector.

If the files are not in the current folder, sourceFiles must include a full or relative path.
Example: 'myFile.c', 'C:\mySources\myFile1.c,C:\mySources\myFile2.c'

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: '-target','i386','-compiler','gnu4.6' specifies that the source code
is intended for a i386 target and contains non-ANSI C syntax for GCC 4.6.

For option names and values, see the Command-Line Information section in “Analysis
Options”.

See Also
polyspace.Project

Topics
“Integrate Polyspace Server Products with MATLAB and Simulink”

Introduced in R2019a

1 Polyspace Bug Finder Server Commands

1-48

polyspaceConfigure
Create Polyspace project from your build system at the MATLAB command line

Syntax
polyspaceConfigure buildCommand

polyspaceConfigure -option value buildCommand

Description
polyspaceConfigure buildCommand traces your build system and creates a
Polyspace project with information gathered from your build system. You can run an
analysis on a Polyspace project only in the user interface of the Polyspace desktop
products.

polyspaceConfigure -option value buildCommand traces your build system and
uses -option value to modify the default operation of polyspaceConfigure. Specify
the modifiers before buildCommand, otherwise they are considered as options in the
build command itself.

Note Before you run Polyspace from MATLAB, you must link your Polyspace and
MATLAB installations. See “Integrate Polyspace Server Products with MATLAB and
Simulink”.

Examples

Create Polyspace Project from Makefile

This example shows how to create a Polyspace project if you use the command make
targetName buildOptions to build your source code. The example creates a
Polyspace project that can be opened only in the user interface of the Polyspace desktop
products.

 polyspaceConfigure

1-49

Create a Polyspace project specifying a unique project name. Use the -B or -W
makefileName option with make so that the all prerequisite targets in the makefile are
remade.

polyspaceConfigure -prog myProject ...
 make -B targetName buildOptions

Open the Polyspace project in the Project Browser.

Create Projects That Have Different Source Files from Same Build Trace

This example shows how to create different Polyspace projects from the same trace of
your build system. You can specify which source files to include for each project. The
example creates a Polyspace project that can be opened only in the user interface of the
Polyspace desktop products.

Trace your build system without creating a Polyspace project by specifying the option -
no-project. To ensure that all the prerequisite targets in your makefile are remade, use
the appropriate make build command option, for instance -B.

polyspaceConfigure -no-project make -B;

polyspace-configure stores the cache information and the build trace in default
locations inside the current folder. To store the cache information and build trace in a
different location, specify the options -cache-path and -build-trace.

Generate Polyspace projects by using the build trace information from the previous step.
Specify a project name and use the -include-sources or -exclude-sources option
to select which files to include for each project.

polyspaceConfigure -no-build -prog myProject ...
-include-sources "glob_pattern";

glob_pattern is a glob pattern that corresponds to folders or files you filter in or out of
your project. To ensure the shell does not expand the glob patterns you pass to
polysapce-configure, enclose them in double quotes.For more information on the
supported syntax for glob patterns, see “Create Polyspace Analysis Configuration from
Build Command”.

If you specified the options -build-trace and -cache-path in the previous step,
specify them again.

Delete the trace file and cache folder.

1 Polyspace Bug Finder Server Commands

1-50

rmdir('polyspace_configure_cache', 's');
delete polyspace_configure_built_trace;

If you used the options -build-trace and -cache-path, use the paths and file names
from those options.

Run Command-Line Polyspace Analysis from Makefile

This example shows how to run Polyspace analysis if you use a build command such as
make targetName buildOptions to build your source code. In this example, you use
polyspaceConfigure to trace your build system but do not create a Polyspace project.
Instead you create an options file that you can use to run Polyspace analysis from the
command-line.

Create a Polyspace options file specifying the -output-options-file command. Use
the -B or -W makefileName option with make so that all prerequisite targets in the
makefile are remade.

polyspaceConfigure -output-options-file ...
 myOptions make -B targetName buildOptions

Use the options file that you created to run a Polyspace analysis at the command line:

polyspaceBugFinderServer -options-file myOptions

Input Arguments
buildCommand — Command for building source code
build command

Build command specified exactly as you use to build your source code.
Example: make -B, make -W makefileName

-option value — Options for changing default operation of
polyspaceConfigure
single option starting with -, followed by argument | multiple space-separated option-
argument pairs

Basic Options

 polyspaceConfigure

1-51

Option Argument Description
-prog Project name Project name that appears in the Polyspace user

interface. The default is polyspace.

If you do not use the option -output-project,
the -prog argument also sets the project name.

Example: -prog myProject creates a project
that has the name myProject in the user
interface. If you do not use the option -
output-project, the project name is also
myProject.psrprj.

-author Author name Name of project author.

Example: -author jsmith
-output-project Path Project file name and location for saving

project. The default is the file
polyspace.psprj in the current folder.

Example: -output-project ../
myProjects/project1 creates a project
project1.psprj in the folder with the relative
path ../myProjects/.

-output-options-file File name Option to create a Polyspace analysis options
file. Use this file for command-line analysis
using polyspace-bug-finder-server.

-allow-build-error None Option to create a Polyspace project even if an
error occurs in the build process.

If an error occurs, the build trace log shows the
following message:

polyspace-configure ERROR: build command
 command_name fail [status=status_value]

command_name is the build command name
that you use and status_value is the non-zero
exit status or error level that indicates which
error occurred in your build process.

1 Polyspace Bug Finder Server Commands

1-52

Option Argument Description
-allow-overwrite None Option to overwrite a project with the same

name, if it exists.

By default, polyspace-configure throws an
error if a project with the same name already
exists in the output folder. Use this option to
overwrite the project.

-silent (default)

-verbose

None Option to suppress or display additional
messages from running polyspace-
configure.

-help None Option to display the full list of polyspace-
configure commands

-debug None Option used by MathWorks technical support

Options to Create Multiple Modules

Option Argument Description
-module None Option to create a separate options file for each

binary created in build system.

You can only create separate options files for
different binaries. You cannot create multiple
modules in a Polyspace project (for running in
the Polyspace user interface).

Use this option only for build systems that use
GNU and Visual C++ compilers.

See also “Modularize Polyspace Analysis by
Using Build Command”.

-output-options-path Path name Location where generated options files are
saved. Use this option together with the option
-module.

The options files are named after the binaries
created in the build system.

Advanced Options

 polyspaceConfigure

1-53

Option Argument Description
-compiler-config Path and file name Location and name of compiler configuration

file.

The file must be in a specific format. For
guidance, see the existing configuration files in
polyspaceroot\polyspace\configure\
compiler_configuration\. For information
on the contents of the file, see “Create
Polyspace Analysis Configuration from Build
Command”.

Example: -compiler-configuration
myCompiler.xml

-no-project None Option to trace your build system without
creating a Polyspace project and save the build
trace information.

Use this option to save your build trace
information for a later run of polyspace-
configure with the -no-build option.

-no-build None Option to create a Polyspace project using
previously saved build trace information.

To use this option, you must have the build
trace information saved from an earlier run of
polyspace-configure with the -no-
project option.

If you use this option, you do not need to specify
the buildCommand argument.

1 Polyspace Bug Finder Server Commands

1-54

Option Argument Description
-no-sources None Option to create a Polyspace options file that

does not contain the source file specifications.

Use this option when you intend to specify the
source files by other means. For instance, you
can use this option when:

• Running Polyspace on AUTOSAR-specific
code.

You want to create an options file that traces
your build command for the compiler
options:

-output-options-file options.txt -no-sources

You later append this options file when
extracting source file names from ARXML
specifications and running the subsequent
Code Prover analysis with polyspace-
autosar

-extra-options-file options.txt

See also “Create Polyspace Analysis
Configuration from AUTOSAR
Specifications” (Polyspace Code Prover
Server).

• Running Polyspace in Eclipse.

Your source files are already specified in
your Eclipse project. When running a
Polyspace analysis, you want to specify an
options file that has the compilation options
only.

 polyspaceConfigure

1-55

Option Argument Description
-extra-project-options Options to use for

subsequent
Polyspace analysis.
For instance, "-
stubbed-
pointers-are-
unsafe".

Options that are used for subsequent Polyspace
analysis.

Once a Polyspace project is created, you can
change some of the default options in the
project. Alternatively, you can pass these
options when tracing your build command. The
flag -extra-project-options allows you to
pass additional options.

Specify multiple options in a space separated
list, for instance "-allow-negative-
operand-in-shift -stubbed-pointers-
are-unsafe".

Suppose you have to set the option -stubbed-
pointers-are-unsafe for every Polyspace
project created. Instead of opening each project
and setting the option, you can use this flag
when creating the Polyspace project:

-extra-project-options
 "-stubbed-pointers-are-unsafe"

For the list of options available, see:

• “Analysis Options”
•

If you are creating an options file instead of a
Polyspace project from your build command, do
not use this flag.

-tmp-path Path Location of folder where temporary files are
stored.

1 Polyspace Bug Finder Server Commands

1-56

Option Argument Description
-build-trace Path and file name Location and name of file where build

information is stored. The default is ./
polyspace_configure_build_trace.log.

Example: -build-trace ../build_info/
trace.log

-include-sources

-exclude-sources

Glob pattern Option to specify which source files
polyspace-configure includes in, or
excludes from, the generated project. You can
combine both options together.

A source file is included if the file path matches
the glob pattern that you pass to -include-
sources.

A source file is excluded if the file path matches
the glob pattern that you pass to -exclude-
sources.

-print-included-sources

-print-excluded-sources

None Option to print the list of source files that
polyspace-configure includes in, or
excludes from, the generated project. You can
combine both options together. The output
displays the full path of each file on a separate
line.

Use this option to troubleshoot the glob
patterns that you pass to -include-sources
or -exclude-sources. You can see which files
match the pattern that you pass to -include-
sources or -exclude-sources.

Cache Control Options

 polyspaceConfigure

1-57

Option Argument Description
-no-cache

-cache-sources (default)

-cache-all-files

None Option to perform one of the following:

• Not create a cache
• Cache only source and header files.
• Cache all files including binaries.

-cache-path Path Location of folder where cache information is
stored.

Example: -cache-path ../cache
-keep-cache

-no-keep-cache (default)

None Option to preserve or clean up cache
information after polyspace-configure
completes execution.

If polyspace-configure fails, you can
provide this cache information to technical
support for debugging purposes.

See Also

Topics
“Create Polyspace Analysis Configuration from Build Command”
“Requirements for Project Creation from Build Systems”
“Compiler Not Supported for Project Creation from Build Systems”

Introduced in R2013b

1 Polyspace Bug Finder Server Commands

1-58

polyspace.Project class
Package: polyspace

Run Polyspace analysis on C and C++ code and read results

Description
Run a Polyspace analysis on C and C++ source files by using this MATLAB object.

• To specify source files and customize analysis options, use the Configuration
property.

• To run the analysis, use the run method.
• To read results after analysis, use the Results property.

Note Before you run Polyspace from MATLAB, you must link your Polyspace and
MATLAB installations. See “Integrate Polyspace Server Products with MATLAB and
Simulink”.

Construction
proj = polyspace.Project creates an object that you can use to configure and run a
Polyspace analysis, and then read the analysis results.

Properties
Configuration — Analysis options
polyspace.Options object

Options for running Polyspace analysis, implemented as a polyspace.Options object.
The object has properties corresponding to the analysis options. For more information on
those properties, see polyspace.Project.Configuration properties.

You can retain the default options or change them in one of these ways:

 polyspace.Project class

1-59

• Set the source code language to 'C', 'CPP', or 'C-CPP' (default). Some analysis options
might not be available depending on the language setting of the object.

proj=polyspace.Project;
proj.Configuration=polyspace.Options('C');

• Modify the properties directly.

proj = polyspace.Project;
proj.Configuration.TargetCompiler.Compiler = 'gnu4.9';

• Obtain the options from another polyspace.Project object.

proj1 = polyspace.Project;
proj1.Configuration.TargetCompiler.Compiler = 'gnu4.9';

proj2 = proj1;

To use common analysis options across multiple projects, follow this approach. For
instance, you want to reuse all options and change only the source files.

• Obtain the options from a project created in the user interface of the Polyspace
desktop products (.psprj file).

proj = polyspace.Project;
projectLocation = fullfile(polyspaceroot, 'polyspace', ...
 'examples', 'cxx', 'Bug_Finder_Example', 'Bug_Finder_Example.psprj')
proj.Configuration = polyspace.loadProject(projectLocation);

To determine the optimal set of options, set your options in the user interface and then
import them to a polyspace.Project object. In the user interface, you can access
help from features such as the Compilation Assistant and get tooltip help on options.

• Obtain the options from a Simulink® model (applies only to Polyspace desktop
products). Before obtaining the options, generate code from the model.

modelName = 'rtwdemo_roll';
load_system(modelName);

% Set parameters for Embedded Coder target
set_param(modelName, 'SystemTargetFile', 'ert.tlc');
set_param(modelName,'Solver','FixedStepDiscrete');
set_param(modelName,'SupportContinuousTime','on');
set_param(modelName,'LaunchReport','off');
set_param(modelName,'InitFltsAndDblsToZero','on');

if exist(fullfile(pwd,'rtwdemo_roll_ert_rtw'), 'dir') == 0

1 Polyspace Bug Finder Server Commands

1-60

 rtwbuild(modelName);
end

% Obtain configuration from model
proj = polyspace.Project;
proj.Configuration = polyspace.ModelLinkOptions(modelName);

Use the options to analyze the code generated from the model.

Results — Analysis results
polyspace.BugFinderResults or polyspace.CodeProverResults object

Results of Polyspace analysis. When you create a polyspace.Project object, this
property is initially empty. The property is populated only after you execute the run
method of the object. Depending on the argument to the run method, 'bugFinder' or
'codeProver', the property is implemented as a polyspace.BugFinderResults or
polyspace.CodeProverResults object.

To read the results, use these methods of the polyspace.BugFinderResults or
polyspace.CodeProverResults object:

• getSummary: Obtain a summarized format of the results into a MATLAB table.

proj = polyspace.Project;
proj.Configuration.Sources = {fullfile(polyspaceroot, 'polyspace', 'examples',...
 'cxx', 'Code_Prover_Example', 'sources', 'single_file_analysis.c')};
proj.Configuration.ResultsDir = fullfile(pwd,'results');

proj.run('bugFinder');

resTable = proj.Results.getSummary('defects');

For more information, see polyspace.BugFinderResults.getSummary or
polyspace.CodeProverResults.getSummary.

• getResults: Obtain the full results or a more readable format into a MATLAB table.

proj = polyspace.Project;
proj.Configuration.Sources = {fullfile(polyspaceroot, 'polyspace', 'examples',...
 'cxx', 'Code_Prover_Example', 'sources', 'single_file_analysis.c')};
proj.Configuration.ResultsDir = fullfile(pwd,'results');

proj.run('bugFinder');

resTable = proj.Results.getResults('readable');

 polyspace.Project class

1-61

For more information, see polyspace.BugFinderResults.getResults or
polyspace.CodeProverResults.getResults.

Methods
run Run a Polyspace analysis

Examples
Check for Bugs

Run a Polyspace Bug Finder analysis on the example file numerical.c. Configure these
options:

• Specify GCC 4.9 as your compiler.
• Save the results in a results subfolder of the current working folder.

proj = polyspace.Project

% Configure analysis
proj.Configuration.Sources = {fullfile(polyspaceroot, 'polyspace', ...
 'examples', 'cxx', 'Bug_Finder_Example', 'sources', 'numerical.c')};
proj.Configuration.TargetCompiler.Compiler = 'gnu4.9';
proj.Configuration.ResultsDir = fullfile(pwd,'results');

% Run analysis
bfStatus = proj.run('bugFinder');

% Read results
bfSummary = proj.Results.getSummary('defects');

Prove Absence of Run-Time Errors

Run a Polyspace Code Prover analysis on the example file single_file_analysis.c.
Configure these options:

• Specify GCC 4.9 as your compiler.
• Save the results in a results subfolder of the current working folder.

1 Polyspace Bug Finder Server Commands

1-62

• Specify that a main function must be generated, if the function does not exist in the
source code.

proj = polyspace.Project

% Configure analysis
proj.Configuration.Sources = {fullfile(polyspaceroot, 'polyspace', 'examples',...
 'cxx', 'Code_Prover_Example', 'sources', 'single_file_analysis.c')};
proj.Configuration.TargetCompiler.Compiler = 'gnu4.9';
proj.Configuration.ResultsDir = fullfile(pwd,'results');
proj.Configuration.CodeProverVerification.MainGenerator = true;

% Run analysis
cpStatus = proj.run('codeProver');

% Read results
cpSummary = proj.Results.getSummary('runtime');

Check for Bugs and MISRA C:2012 Violations

Run a Polyspace Bug Finder analysis on the example file single_file_analysis.c.
Configure these options:

• Specify GCC 4.9 as your compiler.
• Save the results in a results subfolder of the current working folder.
• Enable checking of MISRA C:2012 rules. Check for the mandatory rules only.

proj = polyspace.Project

% Configure analysis
proj.Configuration.Sources = {fullfile(polyspaceroot, 'polyspace', ...
 'examples', 'cxx', 'Bug_Finder_Example', 'sources', 'numerical.c')};
proj.Configuration.TargetCompiler.Compiler = 'gnu4.9';
proj.Configuration.ResultsDir = fullfile(pwd,'results');
proj.Configuration.CodingRulesCodeMetrics.EnableMisraC3 = true;
proj.Configuration.CodingRulesCodeMetrics.MisraC3Subset = 'mandatory';

% Run analysis
bfStatus = proj.run('bugFinder');

% Read results

 polyspace.Project class

1-63

defectsSummary = proj.Results.getSummary('defects');
misraSummary = proj.Results.getSummary('misraC2012');

See Also

Topics
“Integrate Polyspace Server Products with MATLAB and Simulink”

Introduced in R2017b

1 Polyspace Bug Finder Server Commands

1-64

polyspace.Options class
Package: polyspace

Create object for running Polyspace analysis on handwritten code

Note For easier scripting, specify the Polyspace® analysis options using the
Configuration property of a polyspace.Project object. Do not create a
polyspace.Options object directly.

Description
Run a Polyspace analysis from MATLAB by using an options object. To specify source files
and customize analysis options, change the object properties.

To analyze model-generated code (using the Polyspace desktop products), use
polyspace.ModelLinkOptions instead.

Note Before you run Polyspace from MATLAB, you must link your Polyspace and
MATLAB installations. See “Integrate Polyspace Server Products with MATLAB and
Simulink”.

Construction
opts = polyspace.Options creates an object whose properties correspond to options
for running a Polyspace analysis.

proj = polyspace.Project creates a polyspace.Project object. The object has a
property Configuration, which is a polyspace.Options object.

opts = polyspace.Options(lang) creates a Polyspace options object with options
that are applicable to the language lang.

opts = polyspace.loadProject(projectFile) creates a Polyspace options object
from an existing Polyspace project projectFile. You set the options in your project in

 polyspace.Options class

1-65

the Polyspace user interface and create the options object from that project for
programmatically running the analysis.

Input Arguments
lang — Language of analysis
'C-CPP' (default) | 'C' | 'CPP'

The language of the analysis specified as 'C-CPP', 'C', or 'CPP'. This argument
determines the object properties.
Data Types: char

projectFile — Name of .psprj file
character vector

Name of Polyspace project file with extension .psprj, specified as a character vector.

If the file is not in the current folder, projectFile must include a full or relative path. To
identify the current folder, use pwd. To change the current folder, use cd.
Example: 'C:\projects\myProject.psprj'

Properties
The object properties correspond to the analysis options for Polyspace projects. The
properties are organized in the same categories as the Polyspace interface. The property
names are a shortened version of the DOS/UNIX command-line name. For syntax details,
see polyspace.Project.Configuration properties.

Methods

copyTo Copy common settings between Polyspace options objects
generateProject Generate psprj project from options object
toScript Add Polyspace options object definition to a script

1 Polyspace Bug Finder Server Commands

1-66

Examples

Customize and Run Analysis

Create a Polyspace analysis options object and customize the properties. Then, run an
analysis.

Create object and customize properties. In case you do not have write access to your
current folder, a temporary folder is being used for storing analysis results.

sources = fullfile(polyspaceroot, 'polyspace','examples','cxx','Bug_Finder_Example',...
 'sources','numerical.c');
opts = polyspace.Options();
opts.Prog = 'MyProject';
opts.Sources = {sources};
opts.TargetCompiler.Compiler = 'gnu4.7';
opts.ResultsDir = tempname;

Run a Bug Finder analysis. To run a Code Prover analysis, use polyspaceCodeProver
instead of polyspaceBugFinder.

results = polyspaceBugFinder(opts);

With the Polyspace Server products, you can use the functions
polyspaceBugFinderServer or polyspaceCodeProverServer.

Open the results in the Polyspace user interface of the desktop products.

polyspaceBugFinder('-results-dir',opts.ResultsDir);

Run Polyspace by Generating a Project File

Create a Polyspace analysis options object and customize the properties. Then, run a Bug
Finder analysis.

Create object and customize properties.

sources=fullfile(polyspaceroot,'polyspace','examples','cxx','Bug_Finder_Example',...
 'sources','numerical.c');
opts = polyspace.Options();
opts.Prog = 'MyProject';

 polyspace.Options class

1-67

opts.Sources = {sources};
opts.TargetCompiler.Compiler = 'gnu4.7';
opts.ResultsDir = tempname;

Generate a Polyspace project, name it using the Prog property, and open the project in
the Polyspace interface.

psprj = opts.generateProject(opts.Prog);
polyspaceBugFinder(psprj);

You can also analyze the project from the command line. Run the analysis and open the
results in the Polyspace interface.

results = polyspaceBugFinder(psprj, '-nodesktop');
polyspaceBugFinder('-results-dir',opts.ResultsDir);

Alternatives
If you are analyzing code generated from a model, use instead.

See Also
polyspace.Project | polyspaceBugFinderServer

Topics
“Integrate Polyspace Server Products with MATLAB and Simulink”

Introduced in R2017a

1 Polyspace Bug Finder Server Commands

1-68

polyspace.DefectsOptions class
Package: polyspace

Create custom list of defects to check

Description
Create a custom list of defects to check. This object is useful if you want to check only a
custom subset of the Bug Finder defects. To use your custom list of defects in an analysis,
you must add it to a polyspace.Options or polyspace.ModelLinkOptions object
(desktop products only). In your Bug Finder options object, set the following properties:

• Add your defect options object to the BugFinderAnalysis.CheckersList property.
• Change the BugFinderAnalysis.CheckersPreset property to 'custom'.

Note Before you run Polyspace from MATLAB, you must link your Polyspace and
MATLAB installations. See “Integrate Polyspace Server Products with MATLAB and
Simulink”.

Construction
defectList = polyspace.DefectsOptions creates the defect options object
defectList. You can customize the list of active defects by changing the properties.

Properties
An object is created with supported defects as properties. The defects are listed by their
command-line name, found on the individual defect reference pages.

By default, all defects are off. To turn on a defect, set the defect to true. For example:

defectList.FLOAT_ZERO_DIV = true

 polyspace.DefectsOptions class

1-69

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects (MATLAB).

Examples

Customize List of Defects to Check

Use a polyspace.DefectsOptions object to customize the list of defects checked during a
Polyspace Bug Finder analysis.

Create options objects.

defects = polyspace.DefectsOptions;
opts = polyspace.Options;

Set Bug Finder object properties to analyze with the customized defect list.

opts.BugFinderAnalysis.CheckersList = defects;
opts.BugFinderAnalysis.CheckersPreset = 'custom';

Activate the numerical defects.

defects.FLOAT_ZERO_DIV = true;
defects.INT_ZERO_DIV = true;
defects.FLOAT_ABSORPTION = true;
defects.BITWISE_NEG = true;
defects.FLOAT_CONV_OVFL = true;
defects.FLOAT_OVFL = true;
defects.INT_CONV_OVFL = true;
defects.INT_OVFL = true;
defects.FLOAT_STD_LIB = true;
defects.INT_STD_LIB = true;
defects.SHIFT_NEG = true;
defects.SHIFT_OVFL = true;
defects.SIGN_CHANGE = true;
defects.UINT_CONV_OVFL = true;

1 Polyspace Bug Finder Server Commands

1-70

defects.UINT_OVFL = true;
defects.BAD_PLAIN_CHAR_USE = true;

See Also
polyspace.CodingRulesOptions | polyspace.ModelLinkOptions |
polyspace.Options

Topics
“Short Names of Bug Finder Defect Checkers”

Introduced in R2016b

 polyspace.DefectsOptions class

1-71

polyspace.CodingRulesOptions class
Package: polyspace

Create custom list of coding rules to check

Description
Create a custom list of coding rules to check for one of the supported standard coding
rule sets. To use your custom target in an analysis, you must add it to a
polyspace.Options or polyspace.ModelLinkOptions object (desktop products
only). In your options object:

• Add your coding rules options object to one of the
CodingRulesCodeMetrics.RULESETSubset properties.

• Activate your coding rule set with one of the
CodingRulesCodeMetrics.EnableRULESET properties.

Note Before you run Polyspace from MATLAB, you must link your Polyspace and
MATLAB installations. See “Integrate Polyspace Server Products with MATLAB and
Simulink”.

Construction
ruleList = polyspace.CodingRulesOptions(RuleSet) creates the coding rules
object ruleList for the RuleSet coding rule set. Set the active rules in the coding rules
object.

Input Arguments
RuleSet — Standard coding rule set
misraC (default) | misraC2012 | misraAcAgc | misraCpp | jsf

Standard coding rule set specified as one of the coding rule acronyms.
Example: 'misraCpp'

1 Polyspace Bug Finder Server Commands

1-72

Data Types: char

Properties
For each coding rule set, an object is created with all supported rules for that rule set. By
default, all rules are on. To turn off a rule, set the rule to false. For example:

ruleList.rule_20_1 = false

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects (MATLAB).

Examples

Customize List of Coding Rules to Check

Customize the coding rules that are checked during your analysis by using a coding rules
options object.

Create options objects.

misraRules = polyspace.CodingRulesOptions('misraC2012');
opts = polyspace.Options;

Add the customized list of coding rules to the Bug Finder options object and activate
them.

opts.CodingRulesCodeMetrics.MisraC3Subset = misraRules;
opts.CodingRulesCodeMetrics.EnableMisraC3 = true;

Customize the coding rule list by turning off rules 2.1-2.7.

misraRules.rule_2_1 = false;
misraRules.rule_2_2 = false;
misraRules.rule_2_3 = false;
misraRules.rule_2_4 = false;
misraRules.rule_2_5 = false;

 polyspace.CodingRulesOptions class

1-73

misraRules.rule_2_6 = false;
misraRules.rule_2_7 = false;

See Also
polyspace.Options

Introduced in R2016b

1 Polyspace Bug Finder Server Commands

1-74

polyspace.GenericTargetOptions class
Package: polyspace

Create a generic target configuration

Description
If your target processor does not match one of the preset targets, use this object to create
a custom generic target. To use your custom target in an analysis, you must add it to a
polyspace.Options or polyspace.ModelLinkOptions object (desktop products
only). In your options object, add your generic target options object to the
TargetCompiler.Target property.

Note Before you run Polyspace from MATLAB, you must link your Polyspace and
MATLAB installations. See “Integrate Polyspace Server Products with MATLAB and
Simulink”.

Construction
genericTarget = polyspace.GenericTargetOptions creates a generic target that
you can customize. To specify the size and alignment of types, change the properties of
the genericTarget object.

Properties
For more details about any of the properties below, see Generic target options.

Alignment — Largest alignment of struct or array objects
32 (default) | 16 | 8

Largest alignment of struct or array objects, specified as 32, 16, or 8. Comparable with
the DOS/UNIX command-line option -align.
Example: target.Alignment = 8

 polyspace.GenericTargetOptions class

1-75

CharNumBits — Define the number of bits for a char
8 (default) | 16

Define the number of bits for a char, specified as 8 or 16. Comparable with the DOS/
UNIX command-line option -char-is-16bits.
Example: target.CharNumBits = 16

DoubleNumBits — Define the number of bits for a double
32 (default) | 64

Define the number of bits for a double, specified as 32 or 64. Comparable with the DOS/
UNIX command-line option -double-is-64bits.
Example: target.DoubleNumBits = 64

Endianness — Endianness of target architecture
little (default) | big

Endianness of target architecture, specified as little or big. Comparable with the
DOS/UNIX command-line options -little-endian or -big-endian.
Example: target.Endianess = 'big'

IntNumBits — Define the number of bits for an int
16 (default) | 32

Define the number of bits for an int, specified as 16 or 32. Comparable with the DOS/
UNIX command-line option -int-is-32bits.
Example: target.IntNumBits = 32

LongLongNumBits — Define the number of bits for a long long
32 (default) | 64

Define the number of bits for a long long, specified as 32 or 64. Comparable with the
DOS/UNIX command-line option -long-long-is-64bits.
Example: target.LongNumBits = 64

LongNumBits — Define the number of bits for a long
32 (default)

Define the number of bits for a long, specified as 32. Comparable with the DOS/UNIX
command-line option -long-is-32bits.

1 Polyspace Bug Finder Server Commands

1-76

Example: target.LongNumBits = 32

PointerNumBits — Define the number of bits for a pointer
16 (default) | 24 | 32

Define the number of bits for a pointer, specified as 16, 24, or 32. Comparable with the
DOS/UNIX command-line options -pointer-is-24bits and -pointer-is-32bits.
Example: target.PointerNumBits = 32

ShortNumBits — Define the number of bits for a short
16 (default) | 8

Define the number of bits for an int, specified as 16 or 8. Comparable with the DOS/
UNIX command-line option -short-is-8bits.
Example: target.ShortNumBits = 8

SignOfChar — Default sign of plain char
signed (default) | unsigned

Default sign of plain char, specified as signed or unsigned. Comparable with the DOS/
UNIX command-line option -default-sign-of-char.
Example: target.SignOfChar = 'unsigned'

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects (MATLAB).

Examples

Customize Generic Target Settings

Use a polyspace.GenericTargetOptions object to customize a generic target for your
analysis.

Create options objects.

 polyspace.GenericTargetOptions class

1-77

target = polyspace.GenericTargetOptions;
opts = polyspace.Options;

Add the custom target to the Bug Finder options object.

opts.TargetCompiler.Target = target;

Customize the generic target.

target.Endianess = 'big';
target.LongLongNumBits = 64;
target.ShortNumBits = 8;

See Also
Generic target options | polyspace.Options

Introduced in R2016b

1 Polyspace Bug Finder Server Commands

1-78

polyspace.BugFinderResults class
Package: polyspace

Read Polyspace Bug Finder results from MATLAB

Description
Read Polyspace Bug Finder analysis results to MATLAB tables by using this object.

You can obtain a high-level overview or read each individual result, for example, each
instance of a defect.

Note Before you run Polyspace from MATLAB, you must link your Polyspace and
MATLAB installations. See “Integrate Polyspace Server Products with MATLAB and
Simulink”.

Construction
resObj = polyspace.BugFinderResults(resultsFolder) creates an object for
reading a specific set of Bug Finder results into MATLAB tables. Use the object methods
to read the results.

proj = polyspace.Project creates a polyspace.Project object. The object has a
property Results. If you run a Bug Finder analysis, this property is a
polyspace.BugFinderResults object.

Input Arguments
resultsFolder — Name of result folder
character vector

Name of result folder, specified as a character vector. The folder must contain the results
file with extension .psbf. Even if the results file resides in a subfolder of the specified
folder, it cannot be accessed.

 polyspace.BugFinderResults class

1-79

If the folder is not in the current folder, resultsFolder must include a full or relative
path.
Example: 'C:\Polyspace\Results\'

Methods
getSummary View number of defects organized by defect type
getResults Read Bug Finder results into MATLAB table

Examples

Copy Existing Results to MATLAB Tables

This example shows how to read Bug Finder analysis results from MATLAB.

Copy a demo result set to a temporary folder.

resPath=fullfile(polyspaceroot,'polyspace','examples','cxx','Bug_Finder_Example',...
'Module_1','BF_Result');
userResPath = tempname;
copyfile(resPath,userResPath);

Create the results object.

resObj = polyspace.BugFinderResults(userResPath);

Read results to MATLAB tables using the object.

resSummary = getSummary (resObj);
resTable = getResults (resObj);

Run Analysis and Read Results to MATLAB Tables

Run a Polyspace Bug Finder analysis on the demo file numerical.c. Configure these
options:

• Specify GCC 4.9 as your compiler.

1 Polyspace Bug Finder Server Commands

1-80

• Save the results in a results subfolder of the current working folder.

proj = polyspace.Project

% Configure analysis
proj.Configuration.Sources = {fullfile(polyspaceroot, 'polyspace',...
 'examples', 'cxx', 'Bug_Finder_Example', 'sources', 'numerical.c')};
proj.Configuration.TargetCompiler.Compiler = 'gnu4.9';
proj.Configuration.ResultsDir = fullfile(pwd,'results');

% Run analysis
bfStatus = proj.run('bugFinder');

% Read results
bfSummary = proj.Results.getResults('readable');

Alternatives
To read Code Prover results from MATLAB, use the class
polyspace.CodeProverResults. See polyspace.CodeProverResults.

Introduced in R2017a

 polyspace.BugFinderResults class

1-81

polyspace.Project.Configuration Properties
Customize Polyspace analysis of handwritten code with options object properties

Description
To customize your Polyspace analysis, use these polyspace.Options or
polyspace.Project.Configuration properties. Each property corresponds to an
analysis option on the Configuration pane in the Polyspace user interface.

The properties are grouped using the same categories as the Configuration pane. This
page only shows what values each property can take. For details about:

• The different options, see the analysis option reference pages.
• How to create and use the object, see polyspace.Options or polyspace.Project.

The same properties are also available with the deprecated classes
polyspace.BugFinderOptions and polyspace.CodeProverOptions.

Each property description below also highlights if the option affects only one of Bug
Finder or Code Prover.

Note Some options might not be available depending on the language setting of the
object. You can set the source code language (Language) to 'C', 'CPP' or 'C-CPP'
during object creation, but cannot change it later.

Properties
Advanced

Additional — Additional flags for analysis
character vector

Additional flags for analysis specified as a character vector.

For more information, see Other.

1 Polyspace Bug Finder Server Commands

1-82

Example: opts.Advanced.Additional = '-extra-flags -option -extra-flags
value'

PostAnalysisCommand — Command or script software should execute after
analysis finishes
character vector

Command or script software should execute after analysis finishes, specified as a
character vector.

For more information, see Command/script to apply after the end of the
code verification (-post-analysis-command).
Example: opts.Advanced.PostAnalysisCommand = '"C:\Program Files\perl
\win32\bin\perl.exe" "C:\My_Scripts\send_email"'

AutomaticOrangeTester — Run the Automatic Orange Tester
false (default) | true

This property affects Code Prover analysis only.

Run the Automatic Orange Tester after verification, specified as true or false.

For more information, see .
Example: opts.Advanced.AutomaticOrangeTester = true

AutomaticOrangeTesterLoopMaxIteration — Number of loop iterations after
which Automatic Orange Tester considers infinite loop
1000 (default) | positive integer

This property affects Code Prover analysis only.

Number of loop iterations after which Automatic Orange Tester considers the test an
infinite loop, specified as a positive integer, maximum of 1000.

For more information, see .
Example: opts.Advanced.AutomaticOrangeTesterLoopMaxIteration = 500

AutomaticOrangeTesterTestsNumber — Number of tests that Automatic Orange
Tester must run
500 (default) | positive integer

 polyspace.Project.Configuration Properties

1-83

This property affects Code Prover analysis only.

Number of tests that Automatic Orange Tester must run, specified as a positive integer,
maximum of 100,000.

For more information, see .
Example: opts.Advanced.AutomaticOrangeTesterTestsNumber = 1000

AutomaticOrangeTesterTimeout — Time in seconds allowed for a single test in
Automatic Orange Tester
5 (default) | positive integer

This property affects Code Prover analysis only.

Time in seconds allowed for a single test in Automatic Orange Tester, specified as a
positive integer, maximum of 60.

For more information, see .
Example: opts.Advanced.AutomaticOrangeTesterTimeout = 10

BugFinderAnalysis (Affects Bug Finder Only)

CheckersList — List of custom checkers to activate
polyspace.DefectsOptions object | cell array of defect acronyms

This property affects Bug Finder analysis only.

List of custom checkers to activate specified by using the name of a
polyspace.DefectsOptions object or a cell array of defect acronyms. To use this
custom list in your analysis, set CheckersPreset to custom.

For more information, see polyspace.DefectsOptions.
Example: defects = polyspace.DefectsOptions;
opts.BugFinderAnalysis.CheckersList = defects

Example: opts.BugFinderAnalysis.CheckersList =
{'INT_ZERO_DIV','FLOAT_ZERO_DIV'}

CheckersPreset — Subset of Bug Finder defects
default (default) | all | CWE | custom

This property affects Bug Finder analysis only.

1 Polyspace Bug Finder Server Commands

1-84

Preset checker list, specified as a character vector of one of the preset options: default,
all, CWE,or custom. To use custom, specify a BugFinderAnalysis.CheckersList.

For more information, see Find defects (-checkers).
Example: opts.BugFinderAnalysis.CheckersPreset = 'all'

EnableCheckers — Activate defect checking
true (default) | false

This property affects Bug Finder analysis only.

Activate defect checking, specified as true or false. Setting this property to false disables
all defects. If you want to disable defect checking but still get results, turn on coding
rules checking or code metric checking.

This property is equivalent to the Find defects check box in the Polyspace interface.
Example: opts.BugFinderAnalysis.EnableCheckers = false

ChecksAssumption (Affects Code Prover Only)

AllowNegativeOperandInShift — Allow left shift operations on a negative
number
false (default) | true

This property affects Code Prover analysis only.

Allow left shift operations on a negative number, specified as true or false.

For more information, see .
Example: opts.ChecksAssumption.AllowNegativeOperandInShift = true

AllowNonFiniteFloats — Incorporate infinities and/or NaNs
false (default) | true

This property affects Code Prover analysis only.

Incorporate infinities and/or NaNs, specified as true or false.

For more information, see .
Example: opts.ChecksAssumption.AllowNonFiniteFloats = true

 polyspace.Project.Configuration Properties

1-85

AllowPtrArithOnStruct — Allow arithmetic on pointer to a structure field so
that it points to another field
false (default) | true

This property affects Code Prover analysis only.

Allow arithmetic on pointer to a structure field so that it points to another field, specified
as true or false.

For more information, see .
Example: opts.ChecksAssumption.AllowPtrArithOnStruct = true

CheckInfinite — Detect floating-point operations that result in infinities
allow (default) | warn-first | forbid

This property affects Code Prover analysis only.

Detect floating-point operations that result in infinities.

To activate this option, specify ChecksAssumption.AllowNonFiniteFloats.

For more information, see .
Example: opts.ChecksAssumption.CheckInfinite = 'forbid'

CheckNan — Detect floating-point operations that result in NaN-s
allow (default) | warn-first | forbid

This property affects Code Prover analysis only.

Detect floating-point operations that result in NaN-s.

To activate this option, specify ChecksAssumption.AllowNonFiniteFloats.

For more information, see .
Example: opts.ChecksAssumption.CheckNan = 'forbid'

CheckSubnormal — Detect operations that result in subnormal floating point
values
allow (default) | warn-first | warn-all | forbid

This property affects Code Prover analysis only.

1 Polyspace Bug Finder Server Commands

1-86

Detect operations that result in subnormal floating point values.

For more information, see .
Example: opts.ChecksAssumption.CheckSubnormal = 'forbid'

DetectPointerEscape — Find cases where a function returns a pointer to one of
its local variables
false (default) | true

This property affects Code Prover analysis only.

Find cases where a function returns a pointer to one of its local variables, specified as
true or false.

For more information, see .
Example: opts.ChecksAssumption.DetectPointerEscape = true

DisableInitializationChecks — Disable checks for noninitialized variables
and pointers
false (default) | true

This property affects Code Prover analysis only.

Disable checks for noninitialized variables and pointers, specified as true or false.

For more information, see .
Example: opts.ChecksAssumption.DisableInitializationChecks = true

PermissiveFunctionPointer — Allow type mismatch between function pointers
and the functions they point to
false (default) | true

This property affects Code Prover analysis only.

Allow type mismatch between function pointers and the functions they point to, specified
as true or false.

For more information, see .
Example: opts.ChecksAssumption.PermissiveFunctionPointer = true

 polyspace.Project.Configuration Properties

1-87

SignedIntegerOverflows — Behavior of signed integer overflows
forbid (default) | allow | warn-with-wrap-around

This property affects Code Prover analysis only.

Enable the check for signed integer overflows and the assumptions to make following an
overflow specified as forbid, allow, or warn-with-wrap-around.

For more information, see .
Example: opts.ChecksAssumption.SignedIntegerOverflows = 'warn-with-
wrap-around'

SizeInBytes — Allow a pointer with insufficient memory buffer to point to a
structure
false (default) | true

This property affects Code Prover analysis only.

Allow a pointer with insufficient memory buffer to point to a structure, specified as true or
false.

For more information, see .
Example: opts.ChecksAssumption.SizeInBytes = true

UncalledFunctionCheck — Detect functions that are not called directly or
indirectly from main or another entry-point function
none (default) | never-called | called-from-unreachable | all

This property affects Code Prover analysis only.

Detect functions that are not called directly or indirectly from main or another entry-point
function, specified as none, never-called, called-from-unreachable, or all.

For more information, see .
Example: opts.ChecksAssumption.UncalledFunctionCheck = 'all'

UnsignedIntegerOverflows — Behavior of unsigned integer overflows
allow (default) | forbid | warn-with-wrap-around

This property affects Code Prover analysis only.

1 Polyspace Bug Finder Server Commands

1-88

Enable the check for unsigned integer overflows and the assumptions to make following
an overflow, specified as forbid, allow, or warn-with-wrap-around.

For more information, see .
Example: opts.ChecksAssumption.UnsignedIntegerOverflows = 'allow'

CodeProverVerification (Affects Code Prover only)

ClassAnalyzer — Classes that you want to verify
all (default) | none | custom=class1[,class2,...]

This property affects Code Prover analysis only.

Classes that you want to verify, specified as all, none, or
custom=class1[,class2,...].

For more information, see .
Example: opts.CodeProverVerification.ClassAnalyzer =
'custom=myClass1,myClass2'

ClassAnalyzerCalls — Class methods that you want to verify
unused (default) | all | all-public | inherited-all | inherited-all-public |
unused-public | inherited-unused | inherited-unused-public |
custom=method1[,method2,...]

This property affects Code Prover analysis only.

Class methods that you want to verify, specified as one of the predefined sets or as
custom=method1[,method2,...].

For more information, see .
Example: opts.CodeProverVerification.ClassAnalyzerCalls = 'unused-
public'

ClassOnly — Analyze only class methods
false (default) | true

This property affects Code Prover analysis only.

Analyze only class methods, specified as true or false.

For more information, see .

 polyspace.Project.Configuration Properties

1-89

Example: opts.CodeProverVerification.ClassOnly = true

EnableMain — Use main function provided in application
false (default) | true

This property affects Code Prover analysis only.

Use main function provided in application, specified as true or false. If you set this
property to false, the analysis generates a main function, if it is not present in the source
files.

For more information, see .
Example: opts.CodeProverVerification.EnableMain = true

FunctionsCalledBeforeMain — Functions that you want the generated main to
call ahead of other functions
cell array of function names

This property affects Code Prover analysis only.

Functions that you want the generated main to call ahead of other functions, specified as
a cell array of function names.

For more information, see .
Example: opts.CodeProverVerification.FunctionsCalledBeforeMain =
{'func1','func2'}

Main — Use a Microsoft Visual C++ extensions of main
_tmain (default) | wmain | _tWinMain | wWinMain | WinMain | DllMain

This property applies to a Code Prover analysis only .

Use a Microsoft Visual C++ extension of main, specified as one of the predefined main
extensions.

For more information, see .
Example: opts.CodeProverVerification.Main = 'wmain'

MainGenerator — Generate a main function if it is not present in source files
true (default) | false

1 Polyspace Bug Finder Server Commands

1-90

This property applies to a Code Prover analysis only .

Generate a main function if it is not present in source files, specified as true or false.

For more information, see Verify module or library (-main-generator).
Example: opts.CodeProverVerification.MainGenerator = false

MainGeneratorCalls — Functions that you want the generated main to call after
the initialization functions
unused (default) | none | all | custom=function1[,function2[,...]]

This property applies to a Code Prover analysis only .

Functions that you want the generated main to call after the initialization functions,
specified as unused, all, none, or as a character array beginning with custom=
followed by a list of comma-separated function names.

For more information, see .
Example: opts.CodeProverVerification.MainGeneratorCalls = 'all'

MainGeneratorWriteVariables — Global variables that you want the generated
main to initialize
uninit (C++ default) | public (C default) | none | all |
custom=variable1[,variable2[,...]]

This property applies to a Code Prover analysis only .

Global variables that you want the generated main to initialize, specified as one of the
predefined sets, or as a character array beginning with custom= followed by a list of
comma-separated variable names.

For more information, see .
Example: opts.CodeProverVerification.MainGeneratorWriteVariables =
'all'

NoConstructorsInitCheck — Do not check if class constructor initializes class
members
false (default) | true

This property applies to a Code Prover analysis only .

 polyspace.Project.Configuration Properties

1-91

Do not check if class constructor initializes class members, specified as true or false.

For more information, see .
Example: opts.CodeProverVerification.NoConstructorsInitCheck = true

UnitByUnit — Verify each source file independently of other source files
false (default) | true

This property affects Code Prover analysis only.

Verify each source file independently of other source files, specified as true or false.

For more information, see .
Example: opts.CodeProverVerification.UnitByUnit = true

UnitByUnitCommonSource — Files that you want to include with each source file
during a file-by-file verification
cell array of file paths

This property affects Code Prover analysis only.

Files that you want to include with each source file during a file-by-file verification,
specified as a cell array of file paths.

For more information, see .
Example: opts.CodeProverVerification.UnitByUnitCommonSource = {'/inc/
file1.h','/inc/file2.h'}

CodingRulesCodeMetrics

AcAgcSubset — Subset of MISRA AC AGC rules to check
OBL-rules (default) | OBL-REC-rules | single-unit-rules | system-decidable-
rules | all-rules | SQO-subset1 | SQO-subset2 |
polyspace.CodingRulesOptions object | from-file

Subset of MISRA AC AGC rules to check, specified by:

• Character vector of one of the subset names. For more information about the different
subsets, see Check MISRA AC AGC (-misra-ac-agc).

• A MISRA AC AGC custom coding rules object. To create a custom coding rules object,
see polyspace.CodingRulesOptions.

1 Polyspace Bug Finder Server Commands

1-92

• Full path to a file containing your MISRA AC AGC subset. You can create this file
manually or in the Polyspace interface. See .

To check MISRA AC AGC rules, also set EnableAcAgc to true.
Example: opts.CodingRulesCodeMetrics.AcAgcSubset = 'all-rules'
Data Types: char

AllowedPragmas — Pragma directives for which MISRA C:2004 rule 3.4 or MISRA
C++ 16-6-1 must not be applied
cell array of character vectors

Pragma directives for which MISRA C:2004 rule 3.4 or MISRA C++ 16-6-1 must not be
applied, specified as a cell array of character vectors. This property affects only MISRA
C:2004 or MISRA AC AGC rule checking.

For more information, see Allowed pragmas (-allowed-pragmas).
Example: opts.CodingRulesCodeMetrics.AllowedPragmas =
{'pragma_01','pragma_02'}

Data Types: cell

AutosarCpp14 — Set of AUTOSAR C++ 14 rules to check
all (default) | required | automated | polyspace.CodingRulesOptions object |
from-file

This property affects Bug Finder only.

Set of AUTOSAR C++ 14 rules to check, specified by:

• Character vector of one of the subset names. For more information about the different
subsets, see Check AUTOSAR C++ 14 security checks (-autosar-cpp14).

• If you use from-file, use CheckersSelectionByFile to specify the full file path of
the file where you define a custom subset of AUTOSAR C++ 14 checkers.

To check AUTOSAR C++ 14 rules, also set EnableAutosarCpp14 to true.
Example: opts.CodingRulesCodeMetrics.AutosarCpp14 = 'all'
Data Types: char

 polyspace.Project.Configuration Properties

1-93

BooleanTypes — Data types the coding rule checker must treat as effectively
Boolean
cell array of character vectors

Data types that the coding rule checker must treat as effectively Boolean, specified as a
cell array of character vectors.

For more information, see Effective boolean types (-boolean-types).
Example: opts.CodingRulesCodeMetrics.BooleanTypes =
{'boolean1_t','boolean2_t'}

Data Types: cell

CertC — Set of CERT® C rules and recommendations to check
all (default) | publish-2016 | rules | polyspace.CodingRulesOptions object |
from-file

This property affects Bug Finder only.

Set of CERT C rules and recommendations to check, specified by:

• Character vector of one of the subset names. For more information about the different
subsets, see Check CERT-C security checks (-cert-c).

• If you use from-file, use CheckersSelectionByFile to specify the full file path of
the file where you define a custom subset of CERT-C checkers.

To check CERT C rules and recommendations, also set EnableCertC to true.
Example: opts.CodingRulesCodeMetrics.CertC = 'all'
Data Types: char

CertCpp — Set of CERT C++ rules to check
all (default) | rules | polyspace.CodingRulesOptions object | from-file

This property affects Bug Finder only.

Set of CERT C++ rules to check, specified by:

• Character vector of one of the subset names. For more information about the different
subsets, see Check CERT-C++ security checks (-cert-cpp).

• If you use from-file, use CheckersSelectionByFile to specify the full file path of
the file where you define a custom subset of CERT-C++ checkers.

1 Polyspace Bug Finder Server Commands

1-94

To check CERT C++ rules, also set EnableCertCpp to true.
Example: opts.CodingRulesCodeMetrics.CertCpp = 'all'
Data Types: char

CheckersSelectionByFile — File that defines custom set of coding standard
checkers
full file path of .xml file

File where you define a custom set of coding standards checkers to check, specified as
a .xml file. You can, in the same file, define a custom set of checkers for each of the
coding standards that Polyspace supports. To create a file that defines a custom selection
of coding standard checkers, in the Polyspace interface, select a coding standard on the
Coding Standards & Code Metrics node of the Configuration pane and click Edit.

For more information, see Set checkers by file (-checkers-selection-file).
Example: opts.CodingRulesCodeMetrics.CheckersSelectionByFile =
'C:\ps_settings\coding_rules\custom_rules.xml'

Data Types: char

CodeMetrics — Activate code metric calculations
false (default) | true

Activate code metric calculations, specified as true or false. If this property is turned off,
Polyspace does not calculate code metrics even if you upload your results to Polyspace
Metrics.

For more information about the code metrics, see Calculate code metrics (-code-
metrics).
Example: opts.CodingRulesCodeMetrics.CodeMetrics = true

CustomRulesSubset — Custom naming conventions to check against
full file path of custom coding rules .xml file.

Custom naming conventions to check against, specified as a custom coding rules file. To
create a custom coding rules file, in the Polyspace interface, select Check custom rules
on the Coding Standards & Code Metrics node of the Configuration pane and click
Edit

For more information, see Check custom rules (-custom-rules).

 polyspace.Project.Configuration Properties

1-95

Example: opts.CodingRulesCodeMetrics.CustomRulesSubset =
'C:\ps_settings\coding_rules\custom_rules.xml'

Data Types: char

EnableAcAgc — Check MISRA AC AGC rules
false (default) | true

Check MISRA AC AGC rules, specified as true or false. To customize which rules are
checked, use AcAgcSubset.

For more information about the MISRA AC AGC checker, see Check MISRA AC AGC (-
misra-ac-agc).
Example: opts.CodingRulesCodeMetrics.EnableAcAgc = true;

EnableAutosarCpp14 — Check AUTOSAR C++ 14 rules
false (default) | true

This property affects Bug Finder only.

Check AUTOSAR C++ 14 rules, specified as true or false. To customize which rules are
checked, use AutosarCpp14.

For more information about the AUTOSAR C++ 14 checker, see Check AUTOSAR C++
14 security checks (-autosar-cpp14).
Example: opts.CodingRulesCodeMetrics.EnableAutosarCpp14 = true;

EnableCertC — check CERT C rules and recommendations
false (default) | true

This property affects Bug Finder only.

Check CERT C rules and recommendations, specified as true or false. To customize which
rules are checked, use CertC.

For more information about the CERT C checker, see Check CERT-C security checks
(-cert-c).
Example: opts.CodingRulesCodeMetrics.EnableCertC = true;

EnableCertCpp — check CERT C++ rules
false (default) | true

1 Polyspace Bug Finder Server Commands

1-96

This property affects Bug Finder only.

Check CERT C++ rules, specified as true or false. To customize which rules are checked,
use CertCpp.

For more information about the CERT C++ checker, see Check CERT-C++ security
checks (-cert-cpp).
Example: opts.CodingRulesCodeMetrics.EnableCertCpp = true;

EnableCheckersSelectionByFile — Check custom set of coding standard
checkers
false (default) | true

Check custom set of coding standard checkers, specified as true or false. Use with
CheckersSelectionByFile and these coding standards:

• opts.CodingRulesCodeMetrics.AutosarCpp14='from-file'
• opts.CodingRulesCodeMetrics.CertC='from-file'
• opts.CodingRulesCodeMetrics.CertCpp='from-file'
• opts.CodingRulesCodeMetrics.Iso17961='from-file'
• opts.CodingRulesCodeMetrics.JsfSubset='from-file'
• opts.CodingRulesCodeMetrics.MisraC3Subset='from-file'
• opts.CodingRulesCodeMetrics.MisraCSubset='from-file'
• opts.CodingRulesCodeMetrics.MisraCppSubset='from-file'

For more information, see Check custom rules (-custom-rules)Check custom
rules (-custom-rules).
Example: opts.CodingRulesCodeMetrics.EnableCheckersSelectionByFile =
true;

EnableCustomRules — Check custom coding rules
false (default) | true

Check custom coding rules, specified as true or false. The file you specify with
CheckersSelectionByFile defines the custom coding rules.

Use with EnableCheckersSelectionByFile.

For more information, see Check custom rules (-custom-rules).

 polyspace.Project.Configuration Properties

1-97

Example: opts.CodingRulesCodeMetrics.EnableCustomRules = true;

EnableIso17961 — check ISO-17961 rules
false (default) | true

This property affects Bug Finder only.

Check ISO®/IEC TS 17961 rules, specified as true or false. To customize which rules are
checked, use Iso17961.

For more information about the ISO-17961 checker, see Check ISO-17961 security
checks (-iso-17961).
Example: opts.CodingRulesCodeMetrics.EnableIso17961 = true;

EnableJsf — Check JSF C++ rules
false (default) | true

Check JSF C++ rules, specified as true or false. To customize which rules are checked,
use JsfSubset.

For more information, see Check JSF C++ rules (-jsf-coding-rules).
Example: opts.CodingRulesCodeMetrics.EnableJsf = true;

EnableMisraC — Check MISRA C:2004 rules
false (default) | true

Check MISRA C:2004 rules, specified as true or false. To customize which rules are
checked, use MisraCSubset.

For more information, see Check MISRA C:2004 (-misra2).
Example: opts.CodingRulesCodeMetrics.EnableMisraC = true;

EnableMisraC3 — Check MISRA C:2012 rules
false (default) | true

Check MISRA C:2012 rules, specified as true or false. To customize which rules are
checked, use MisraC3Subset.

For more information about the MISRA C:2012 checker, see Check MISRA C:2012 (-
misra3).
Example: opts.CodingRulesCodeMetrics.EnableMisraC3 = true;

1 Polyspace Bug Finder Server Commands

1-98

EnableMisraCpp — Check MISRA C++:2008 rules
false (default) | true

Check MISRA C++:2008 rules, specified as true or false. To customize which rules are
checked, use MisraCppSubset.

For more information about the MISRA C++:2008 checker, see Check MISRA C++
rules (-misra-cpp).
Example: opts.CodingRulesCodeMetrics.EnableMisraCpp = true;

Iso17961 — Set of ISO-17961 rules to check
all (default) | decidable | polyspace.CodingRulesOptions object | from-file

This property affects Bug Finder only.

Set of ISO/IEC TS 17961 rules to check, specified by:

• Character vector of one of the subset names. For more information about the different
subsets, see Check ISO-17961 security checks (-iso-17961).

• If you use from-file, use CheckersSelectionByFile to specify the full file path of
the file where you define a custom subset of ISO-17961 checkers.

To check ISO/IEC TS 17961 rules, also set EnableIso17961 to true.
Example: opts.CodingRulesCodeMetrics.Iso17961 = 'all'
Data Types: char

JsfSubset — Subset of JSF C++ rules to check
shall-rules (default) | shall-will-rules | all-rules |
polyspace.CodingRulesOptions object | file

Subset of JSF C++ rules to check, specified by:

• Character vector of one of the subset names. For more information about the different
subsets, see Check JSF C++ rules (-jsf-coding-rules).

• A JSF C++ custom coding rules object. To create a custom coding rules object, see
polyspace.CodingRulesOptions.

• Full path to a file containing your JSF C++ subset. You can create this file manually or
from the Polyspace interface. See .

To check JSF C++ rules, set EnableJsf to true.

 polyspace.Project.Configuration Properties

1-99

Example: opts.CodingRulesCodeMetrics.JsfSubset = 'all-rules'
Data Types: char

Misra3AgcMode — Use the MISRA C:2012 categories for automatically generated
code
false (default) | true

Use the MISRA C:2012 categories for automatically generated code, specified as true or
false.

For more information, see Use generated code requirements (-misra3-agc-
mode).
Example: opts.CodingRulesCodeMetrics.Misra3AgcMode = true;

MisraC3Subset — Subset of MISRA C:2012 rules to check
mandatory-required (default) | mandatory | single-unit-rules | system-
decidable-rules | all | SQO-subset1 | SQO-subset2 |
polyspace.CodingRulesOptions object | file

Subset of MISRA C:2012 rules to check, specified by:

• Character vector of one of the subset names. For more information about the different
subsets, see Check MISRA C:2012 (-misra3).

• A MISRA C:2012 custom coding rules object. To create a custom coding rules object,
see polyspace.CodingRulesOptions.

• Full path to a file containing your MISRA C:2012 subset. You can create the custom
coding rules file manually or in the Polyspace interface. See .

To check MISRA C:2012 rules, also set EnableMisraC3 to true.
Example: opts.CodingRulesCodeMetrics.MisraC3Subset = 'all'
Data Types: char

MisraCSubset — Subset of MISRA C:2004 rules to check
required-rules (default) | single-unit-rules | system-decidable-rules | all-
rules | SQO-subset1 | SQO-subset2 | polyspace.CodingRulesOptions object | file

Subset of MISRA C:2004 rules to check, specified by:

• Character vector of one of the subset names. For more information about the different
subsets, see Check MISRA C:2004 (-misra2).

1 Polyspace Bug Finder Server Commands

1-100

• A MISRA C:2004 custom coding rules object. To create a custom coding rules object,
see polyspace.CodingRulesOptions.

• Full path to a file containing your MISRA C:2004 subset. You can create the custom
coding rules file manually or in the Polyspace interface. See .

To check MISRA C:2004 rules, also set EnableMisraC to true.
Example: opts.CodingRulesCodeMetrics.MisraCSubset = 'all-rules'
Data Types: char

MisraCppSubset — Subset of MISRA C++ rules
required-rules (default) | all-rules | CERT-rules | CERT-all | SQO-subset1 |
SQO-subset2 | polyspace.CodingRulesOptions object | file

Subset of MISRA C++:2008 rules to check, specified by:

• Character vector of one of the subset names. For more information about the different
subsets, see Check MISRA C++ rules (-misra-cpp).

• A MISRA C++ coding rules object. To create a custom coding rules object, see
polyspace.CodingRulesOptions.

• Full path to a file containing your MISRA C++ subset. You can create this file
manually or from the Polyspace interface. See .

To check MISRA C++ rules, set EnableMisraCpp to true.
Example: opts.CodingRulesCodeMetrics.MisraCppSubset = 'all-rules'
Data Types: char

EnvironmentSettings

Dos — Consider that file paths are in MS-DOS style
true (default) | false

Consider that file paths are in MS-DOS style, specified as true or false.

For more information, see Code from DOS or Windows file system (-dos).
Example: opts.EnvironmentSettings.Dos = true;

IncludeFolders — Include folders needed for compilation
cell array of include folder paths

 polyspace.Project.Configuration Properties

1-101

Include folders needed for compilation, specified as a cell array of the include folder
paths.

To specify all subfolders of a folder, use folder path followed by **, for instance,
'C:\includes**'. The notation follows the syntax of the dir function. See also .

For more information, see -I.
Example: opts.EnvironmentSettings.IncludeFolders = {'/includes','/
com1/inc'};

Example: opts.EnvironmentSettings.IncludeFolders =
{'C:\project1\common\includes'};

Data Types: cell

Includes — Files to be #include-ed by each C file
cell array of files

Files to be #include-ed by each C source file in the analysis, specified by a cell array of
files.

For more information, see Include (-include).
Example: opts.EnvironmentSettings.Includes = {'/inc/inc_file.h','/inc/
inc_math.h'}

NoExternC — Ignore linking errors inside extern blocks
false (default) | true

Ignore linking errors inside extern blocks, specified as true or false.

For more information, see Ignore link errors (-no-extern-c).
Example: opts.EnvironmentSettings.NoExternC = false;

PostPreProcessingCommand — Command or script to run on source files after
preprocessing
character vector

Command or script to run on source files after preprocessing, specified as a character
vector of the command to run.

For more information, see Command/script to apply to preprocessed files (-
post-preprocessing-command).

1 Polyspace Bug Finder Server Commands

1-102

Example: Linux — opts.EnvironmentSettings.PostPreProcessingCommand =
[pwd,'/replace_keyword.pl']

Example: Windows — opts.EnvironmentSettings.PostPreProcessingCommand =
'"C:\Program Files\MATLAB\R2015b\sys\perl\win32\bin\perl.exe"
"C:\My_Scripts\replace_keyword.pl"'

StopWithCompileError — Stop analysis if a file does not compile
false (default) | true

Stop analysis if a file does not compile, specified as true or false.

For more information, see Stop analysis if a file does not compile (-stop-
if-compile-error).
Example: opts.EnvironmentSettings.StopWithCompileError = true;

InputsStubbing

DataRangeSpecifications — Constrain global variables, function inputs, and
return values of stubbed functions
file path

Constrain global variables, function inputs, and return values of stubbed functions
specified by the path to an XML constraint file. For more information about the constraint
file, see .

For more information about this option, see Constraint setup (-data-range-
specifications).
Example: opts.InputsStubbing.DataRangeSpecifications = 'C:\project
\constraint_file.xml'

DoNotGenerateResultsFor — Files on which you do not want analysis results
include-folders (default) | all-headers | custom=file1[,folder1[,...]]

Files on which you do not want analysis results, specified by include-folders, all-
headers, or a character array beginning with custom= and containing a list of comma-
separated file or folder names.

Use this option with InputsStubbing.GenerateResultsFor. For more information,
see Do not generate results for (-do-not-generate-results-for).
Example: opts.InputsStubbing.DoNotGenerateResultsFor =
'custom=C:\project\file1.c,C:\project\file2.c'

 polyspace.Project.Configuration Properties

1-103

GenerateResultsFor — Files on which you want analysis results
source-headers (default) | all-headers | custom=file1[,folder1[,...]]

Files on which you want analysis results, specified by source-headers, all-headers,
or a character array beginning with custom= and containing a comma-separated file or
folder names.

Use this option with InputsStubbing.DoNotGenerateResultsFor. For more
information, see Generate results for sources and (-generate-results-
for).
Example: opts.InputsStubbing.GenerateResultsFor = 'custom=C:\project
\includes_common_1,C:\project\includes_common_2'

FunctionsToStub — Functions to stub during analysis
cell array of function names

This property affects Code Prover analysis only.

Functions to stub during analysis, specified as a cell array of function names.

For more information, see .
Example: opts.InputsStubbing.FunctionsToStub = {'func1', 'func2'}

NoDefInitGlob — Consider global variables as uninitialized
false (default) | true

This property affects Code Prover analysis only.

Consider global variables as uninitialized, specified as true or false.

For more information, see .
Example: opts.InputsStubbing.NoDefInitGlob = true

NoStlStubs — Do not use Polyspace implementations of functions in the
Standard Template Library
false (default) | true

This property applies only to a Code Prover analysis of C++ code.

Do not use Polyspace implementations of functions in the Standard Template Library,
specified as true or false.

1 Polyspace Bug Finder Server Commands

1-104

For more information, see .
Example: opts.InputsStubbing.NoStlStubs = true

StubECoderLookupTables — Specify that the analysis must stub functions in the
generated code that use lookup tables
true (default) | false

This property applies only to a Code Prover analysis of code generated from models.

Specify that the analysis must stub functions in the generated code that use lookup
tables. By replacing the functions with stubs, the analysis assumes more precise return
values for the functions.

For more information, see .
Example: opts.InputsStubbing.StubECoderLookupTables = true

Macros

DefinedMacros — Macros to be replaced
cell array of macros

In preprocessed code, macros are replaced by the definition, specified in a cell array of
macros and definitions. Specify the macro as Macro=Value. If you want Polyspace to
ignore the macro, leave the Value blank. A macro with no equal sign replaces all
instances of that macro by 1.

For more information, see Preprocessor definitions (-D).
Example: opts.Macros.DefinedMacros = {'uint32=int','name3=','var'}

UndefinedMacros — Macros to undefine
cell array of macros

In preprocessed code, macros are undefined, specified by a cell array of macros to
undefine.

For more information, see Disabled preprocessor definitions (-U).
Example: opts.Macros.DefinedMacros = {'name1','name2'}

 polyspace.Project.Configuration Properties

1-105

MergedComputingSettings

AddToResultsRepositoryBugFinder — Upload Bug Finder results to Polyspace
Metrics web dashboard
false (default) | true

This property affects Bug Finder analysis only.

Upload Bug Finder analysis results to Polyspace Metrics web dashboard, specified as true
or false. To use this option, in your Polyspace preferences, you must specify a metrics
server.

For more information, see Upload results to Polyspace Metrics (-add-to-
results-repository).
Example: opts.MergedComputingSettings.AddToResultsRepositoryBugFinder
= true;

AddToResultsRepositoryCodeProver — Upload Code Prover results to
Polyspace Metrics web dashboard
false (default) | true

This property affects Code Prover analysis only.

Upload Code Prover analysis results to Polyspace Metrics web dashboard, specified as
true or false. To use this option, in your Polyspace preferences, you must specify a metrics
server.

For more information, see .
Example: opts.MergedComputingSettings.AddToResultsRepositoryCodeProver
= true;

BatchBugFinder — Send Bug Finder analysis to remote server
false (default) | true

This property affects Bug Finder analysis only.

Send Bug Finder analysis to remote server, specified as true or false. To use this option, in
your Polyspace preferences, you must specify a metrics server.

For more information, see Run Bug Finder or Code Prover analysis on a
remote cluster (-batch).

1 Polyspace Bug Finder Server Commands

1-106

Example: opts.MergedComputingSettings.BatchBugFinder = true;

BatchCodeProver — Send Code Prover analysis to remote server
false (default) | true

This property affects Code Prover analysis only.

Send Code Prover analysis to remote server, specified as true or false. To use this option,
in your Polyspace preferences, you must specify a metrics server.

For more information, see .
Example: opts.MergedComputingSettings.BatchCodeProver = true;

FastAnalysis — Run Bug Finder analysis using faster local mode
false (default) | true

This property affects Bug Finder analysis only.

Use fast analysis mode for Bug Finder analysis, specified as true or false.

For more information, see Use fast analysis mode for Bug Finder (-fast-
analysis).
Example: opts.MergedComputingSettings.FastAnalysis = true;

MergedReporting

EnableReportGeneration — Generate a report after the analysis
false (default) | true

After the analysis, generate a report, specified as true or false.

For more information, see Generate report.
Example: opts.MergedReporting.EnableReportGeneration = true

ReportOutputFormat — Output format of generated report
Word (default) | HTML | PDF

Output format of generated report, specified as one of the report formats. To activate this
option, specify Reporting.EnableReportGeneration.

For more information about the different values, see Output format (-report-
output-format).

 polyspace.Project.Configuration Properties

1-107

Example: opts.MergedReporting.ReportOutputFormat = 'PDF'

BugFinderReportTemplate — Template for generating Bug Finder analysis
report
BugFinderSummary (default) | BugFinder | SecurityCWE | CodeMetrics |
CodingStandards

This property affects a Bug Finder analysis only.

Template for generating analysis report, specified as one of the report formats. To
activate this option, specify Reporting.EnableReportGeneration.

For more information about the different values, see Bug Finder and Code Prover
report (-report-template).
Example: opts.MergedReporting.BugFinderReportTemplate = 'CodeMetrics'

CodeProverReportTemplate — Template for generating Code Prover analysis
report
Developer (default) | CallHierarchy | CodeMetrics | CodingStandards |
DeveloperReview | Developer_withGreenChecks | Quality | VariableAccess

This property affects a Code Prover analysis only.

Template for generating analysis report, specified as one of the predefined report
formats. To activate this option, specify Reporting.EnableReportGeneration.

For more information about the different values, see .
Example: opts.MergedReporting.CodeProverReportTemplate = 'CodeMetrics'

Multitasking

ArxmlMultitasking — Specify path of ARXML files to parse for multitasking
configuration
cell array of file paths

Specify the path to the ARXML files the software parses to set up your multitasking
configuration.

To activate this option, specify Multitasking.EnableExternalMultitasking and set
Multitasking.ExternalMultitaskingType to autosar.

For more information, see ARXML files selection (-autosar-multitasking)

1 Polyspace Bug Finder Server Commands

1-108

Example: opts.Multitasking.ArxmlMultitasking={'C:\Polyspace_Workspace
\AUTOSAR\myFile.arxml'}

CriticalSectionBegin — Functions that begin critical sections
cell array of critical section function names

Functions that begin critical sections specified as a cell array of critical section function
names. To activate this option, specify Multitasking.EnableMultitasking and
Multitasking.CriticalSectionEnd.

For more information, see Critical section details (-critical-section-
begin -critical-section-end).
Example: opts.Multitasking.CriticalSectionBegin =
{'function1:cs1','function2:cs2'}

CriticalSectionEnd — Functions that end critical sections
cell array of critical section function names

Functions that end critical sections specified as a cell array of critical section function
names. To activate this option, specify Multitasking.EnableMultitasking and
Multitasking.CriticalSectionBegin.

For more information, see Critical section details (-critical-section-
begin -critical-section-end).
Example: opts.Multitasking.CriticalSectionEnd =
{'function1:cs1','function2:cs2'}

CyclicTasks — Specify functions that represent cyclic tasks
cell array of function names

Specify functions that represent cyclic tasks.

To activate this option, also specify Multitasking.EnableMultitasking.

For more information, see Cyclic tasks (-cyclic-tasks).
Example: opts.Multitasking.CyclicTasks = {'function1','function2'}

EnableConcurrencyDetection — Enable automatic detection of certain families
of threading functions
false (default) | true

 polyspace.Project.Configuration Properties

1-109

This property affects Code Prover analysis only.

Enable automatic detection of certain families of threading functions, specified as true or
false.

For more information, see .
Example: opts.Multitasking.EnableConcurrencyDetection = true

EnableExternalMultitasking — Enable automatic multitasking configuration
from external file definitions
false (default) | true

Enable multitasking configuration of your projects from external files you provide.
Configure multitasking from ARXML files for an AUTOSAR project, or from OIL files for
an OSEK project.

Activate this option to enable Multitasking.ArxmlMultitasking or
Multitasking.OsekMultitasking.

For more information, see OIL files selection (-osek-multitasking) and
ARXML files selection (-autosar-multitasking).
Example: opts.Multitasking.EnableExternalMultitasking = 1

EnableMultitasking — Configure multitasking manually
false (default) | true

Configure multitasking manually by specifying true. This property activates the other
manual, multitasking properties.

For more information, see Configure multitasking manually.
Example: opts.Multitasking.EnableMultitasking = 1

EntryPoints — Functions that serve as entry-points to your multitasking
application
cell array of entry-point function names

Functions that serve as entry-points to your multitasking application specified as a cell
array of entry-point function names. To activate this option, also specify
Multitasking.EnableMultitasking.

For more information, see Tasks (-entry-points).

1 Polyspace Bug Finder Server Commands

1-110

Example: opts.Multitasking.EntryPoints = {'function1','function2'}

ExternalMultitaskingType — Specify type of file to parse for multitasking
configuration
osek (default) | autosar

Specify the type of file the software parses to set up your multitasking configuration:

• For osek type, the analysis looks for OIL files in the file or folder paths that you
specify.

• For autosar type, the analysis looks for ARXML files in the file paths that you specify.

To activate this option, specify Multitasking.EnableExternalMultitasking.

For more information, see OIL files selection (-osek-multitasking) and
ARXML files selection (-autosar-multitasking).
Example: opts.Multitasking.ExternalMultitaskingType = 'autosar'

Interrupts — Specify functions that represent nonpreemptable interrupts
cell array of function names

Specify functions that represent nonpreemptable interrupts.

To activate this option, specify Multitasking.EnableMultitasking.

For more information, see Interrupts (-interrupts).
Example: opts.Multitasking.Interrupts = {'function1','function2'}

InterruptsDisableAll — Specify routine that disable interrupts
cell array with one function name

This property affects Bug Finder analysis only.

Specify function that disables all interrupts.

To activate this option, specify Multitasking.EnableMultitasking.

For more information, see Disabling all interrupts (-routine-disable-
interrupts -routine-enable-interrupts).
Example: opts.Multitasking.InterruptsDisableAll = {'function'}

 polyspace.Project.Configuration Properties

1-111

InterruptsEnableAll — Specify routine that reenable interrupts
cell array with one function name

This property affects Bug Finder analysis only.

Specify function that reenables all interrupts.

To activate this option, specify Multitasking.EnableMultitasking.

For more information, see Disabling all interrupts (-routine-disable-
interrupts -routine-enable-interrupts).
Example: opts.Multitasking.InterruptsEnableAll = {'function'}

OsekMultitasking — Specify path of OIL files to parse for multitasking
configuration
auto (default) | custom=file1[,folder1[,...]]

Specify the path to the OIL files the software parses to set up your multitasking
configuration:

• In auto mode, the analysis uses OIL files in your project source and include folders,
but not their subfolders.

• In custom mode, the analysis uses the OIL files at the specified path, and the path
subfolders.

To activate this option, specify Multitasking.EnableExternalMultitasking and set
Multitasking.ExternalMultitaskingType to osek.

For more information, see OIL files selection (-osek-multitasking)
Example: opts.Multitasking.OsekMultitasking = 'custom=file_path,
dir_path'

TemporalExclusion — Entry-point functions that cannot execute concurrently
cell array of entry-point function names

Entry-point functions that cannot execute concurrently specified as a cell array of entry-
point function names. Each set of exclusive tasks is one cell array entry with functions
separated by spaces. To activate this option, specify
Multitasking.EnableMultitasking.

1 Polyspace Bug Finder Server Commands

1-112

For more information, see Temporally exclusive tasks (-temporal-
exclusions-file).
Example: opts.Multitasking.TemporalExclusion = {'function1 function2',
'function3 function4 function5'} where function1 and function2 are temporally
exclusive, and function3, function4, and function 5 are temporally exclusive.

Precision (Affects Code Prover Only)

ContextSensitivity — Store call context information to identify function call
that caused errors
none (default) | auto | custom=function1[,function2[,...]]

This property affects Code Prover analysis only.

Store call context information to identify a function call that caused errors, specified as
none, auto, or as a character array beginning with custom= followed by a list of comma-
separated function names.

For more information, see .
Example: opts.Precision.ContextSensitivity = 'auto'
Example: opts.Precision.ContextSensitivity = 'custom=func1'

ModulesPrecision — Source files you want to verify at higher precision
cell array of file names and precision levels

This property affects Code Prover analysis only.

Source files that you want to verify at higher precision, specified as a cell array of file
names without the extension and precision levels using this syntax: filename:Olevel

For more information, see .
Example: opts.Precision.ModulesPrecision = {'file1:O0', 'file2:O3'}

OLevel — Precision level for the verification
2 (default) | 0 | 1 | 3

This property affects Code Prover analysis only.

Precision level for the verification, specified as 0, 1, 2, or 3.

For more information, see .

 polyspace.Project.Configuration Properties

1-113

Example: opts.Precision.OLevel = 3

PathSensitivityDelta — Avoid certain verification approximations for code
with fewer lines
positive integer

This property affects Code Prover analysis only.

Avoid certain verification approximations for code with fewer lines, specified as a positive
integer representing how sensitive the analysis is. Higher values can increase verification
time exponentially.

For more information, see .
Example: opts.Precision.PathSensitivityDelta = 2

Timeout — Time limit on your verification
character vector

This property affects Code Prover analysis only.

Time limit on your verification, specified as a character vector of time in hours.

For more information, see .
Example: opts.Precision.Timeout = '5.75'

To — Number of times the verification process runs
Software Safety Analysis level 2 (default) | Software Safety Analysis
level 0 | Software Safety Analysis level 1 | Software Safety Analysis
level 3 | Software Safety Analysis level 4 | Source Compliance Checking
| other

This property affects Code Prover analysis only.

Number of times the verification process runs, specified as one of the preset analysis
levels.

For more information, see .
Example: opts.Precision.To = 'Software Safety Analysis level 3'

1 Polyspace Bug Finder Server Commands

1-114

Scaling (Affects Code Prover Only)

Inline — Functions on which separate results must be generated for each
function call
cell array of function names

This property affects Code Prover analysis only.

Functions on which separate results must be generated for each function call, specified as
a cell array of function names.

For more information, see .
Example: opts.Scaling.Inline = {'func1','func2'}

KLimiting — Limit depth of analysis for nested structures
positive integer

This property affects Code Prover analysis only.

Limit depth of analysis for nested structures, specified as a positive integer indicating
how many levels into a nested structure to verify.

For more information, see .
Example: opts.Scaling.KLimiting = 3

TargetCompiler

Compiler — Compiler that builds your source code
generic (default) | gnu3.4 | gnu4.6 | gnu4.7 | gnu4.8 | gnu4.9 | gnu5.x | gnu6.x |
gnu7.x | clang3.x | clang4.x | clang5.x | visual9.0 | visual10 | visual11.0 |
visual12.0 | visual14.0 | visual15.x | keil | iar | armcc | armclang |
codewarrior | diab | greenhills | iar-ew | renesas | tasking | ti

Compiler that builds your source code.

For more information, see Compiler (-compiler).
Example: opts.TargetCompiler.Compiler = 'Visual11.0'

CppVersion — Specify C++11 standard version followed in code
defined-by-compiler (default) | cpp03 | cpp11 | cpp14

Specify C++ standard version followed in code, specified as a character vector.

 polyspace.Project.Configuration Properties

1-115

For more information, see C++ standard version (-cpp-version).
Example: opts.TargetCompiler.CppVersion = 'cpp11';

CVersion — Specify C standard version followed in code
defined-by-compiler (default) | c90 | c99 | c11

Specify C standard version followed in code, specified as a character vector.

For more information, see C standard version (-c-version).
Example: opts.TargetCompiler.CVersion = 'c90';

DivRoundDown — Round down quotients from division or modulus of negative
numbers
false (default) | true

Round down quotients from division or modulus of negative numbers, specified as true or
false.

For more information, see Division round down (-div-round-down).
Example: opts.TargetCompiler.DivRoundDown = true

EnumTypeDefinition — Base type representation of enum
defined-by-compiler (default) | auto-signed-first | auto-unsigned-first

Base type representation of enum, specified by an allowed base-type set. For more
information about the different values, see Enum type definition (-enum-type-
definition).
Example: opts.TargetCompiler.EnumTypeDefinition = 'auto-unsigned-
first'

IgnorePragmaPack — Ignore #pragma pack directives
false (default) | true

Ignore #pragma pack directives, specified as true or false.

For more information, see Ignore pragma pack directives (-ignore-pragma-
pack).
Example: opts.TargetCompiler.IgnorePragmaPack = true

1 Polyspace Bug Finder Server Commands

1-116

Language — Language of analysis
C-CPP (default) | C | CPP

This property is read-only.

Language of the analysis, specified during the object construction. This value changes
which properties appear.

For more information, see Source code language (-lang).

LogicalSignedRightShift — Treatment of signed bit on signed variables
Arithmetical (default) | Logical

Treatment of signed bit on signed variables, specified as Arithmetical or Logical. For
more information, see Signed right shift (-logical-signed-right-shift).
Example: opts.TargetCompiler.LogicalSignedRightShift = 'Logical'

NoUliterals — Do not use predefined typedefs for char16_t or char32_t
false (default) | true

Do not use predefined typedefs for char16_t or char32_t, specified as true or false. For
more information, see Block char16/32_t types (-no-uliterals).
Example: opts.TargetCompiler.NoUliterals = true

PackAlignmentValue — Default structure packing alignment
defined-by-compiler (default) | 1 | 2 | 4 | 8 | 16

Default structure packing alignment, specified as defined-by-compiler, 1,2, 4, 8, or
16. This property is available only for Visual C++ code.

For more information, see Pack alignment value (-pack-alignment-value).
Example: opts.TargetCompiler.PackAlignmentValue = '4'

SfrTypes — sfr types
cell array of sfr keywords

sfr types, specified as a cell array of sfr keywords using the syntax
sfr_name=size_in_bits. For more information, see Sfr type support (-sfr-
types).

This option only applies when you set TargetCompiler.Compiler to keil or iar.

 polyspace.Project.Configuration Properties

1-117

Example: opts.TargetCompiler.SfrTypes = {'sfr32=32'}

SizeTTypeIs — Underlying type of size_t
defined-by-compiler (default) | unsigned-int | unsigned-long | unsigned-
long-long

Underlying type of size_t, specified as defined-by-compiler, unsigned-int,
unsigned-long, or unsigned-long-long. See Management of size_t (-size-t-
type-is).
Example: opts.TargetCompiler.SizeTTypeIs = 'unsigned-long'

Target — Target processor
i386 (default) | arm | arm64 | avr | c-167 | c166 | c18 | c28x | c6000 | coldfire |
hc08 | hc12 | m68k | mcore | mips | mpc5xx | msp430 | necv850 | powerpc |
powerpc64 | rh850 | rl78 | rx | s12z | sharc21x61 | sparc | superh | tms320c3x |
tricore | x86_64 | generic target object

Set size of data types and endianness of processor, specified as one of the predefined
target processors or a generic target object.

For more information about the predefined processors, see Target processor type
(-target).

For more information about creating a generic target, see
polyspace.GenericTargetOptions.
Example: opts.TargetCompiler.Target = 'hc12'

WcharTTypeIs — Underlying type of wchar_t
defined-by-compiler (default) | signed-short | unsigned-short | signed-int |
unsigned-int | signed-long | unsigned-long

Underlying type of wchar_t, specified as defined-by-compiler, signed-short,
unsigned-short, signed-int, unsigned-int, signed-long, or unsigned-long.
See Management of wchar_t (-wchar-t-type-is).
Example: opts.TargetCompiler.WcharTTypeIs = 'unsigned-int'

VerificationAssumption (Affects Code Prover Only)

ConsiderVolatileQualifierOnFields — Assume that volatile qualified
structure fields can have all possible values at any point in code
false (default) | true

1 Polyspace Bug Finder Server Commands

1-118

This property affects Code Prover analysis only.

Assume that volatile qualified structure fields can have all possible values at any point in
code.

For more information, see .
Example: opts.VerificationAssumption.ConsiderVolatileQualifierOnFields
= true

ConstraintPointersMayBeNull — Specify that environment pointers can be
NULL unless constrained otherwise
false (default) | true

This property affects Code Prover analysis only.

Specify that environment pointers can be NULL unless constrained otherwise.

For more information, see .
Example: opts.VerificationAssumption.ConstraintPointersMayBeNull =
true

FloatRoundingMode — Rounding modes to consider when determining the
results of floating-point arithmetic
to-nearest (default) | all

This property affects Code Prover analysis only.

Rounding modes to consider when determining the results of floating-point arithmetic,
specified as to-nearest or all.

For more information, see .
Example: opts.VerificationAssumption.FloatRoundingMode = 'all'

RespectTypesInFields — Do not cast nonpointer fields of a structure to
pointers
false (default) | true

This property affects Code Prover analysis only.

Do not cast nonpointer fields of a structure to pointers, specified as true or false.

 polyspace.Project.Configuration Properties

1-119

For more information, see .
Example: opts.VerificationAssumption.RespectTypesInFields = true

RespectTypesInGlobals — Do not cast nonpointer global variables to pointers
false (default) | true

This property affects Code Prover analysis only.

Do not cast nonpointer global variables to pointers, specified as true or false.

For more information, see .
Example: opts.VerificationAssumption.RespectTypesInGlobals = true

Other Properties

Author — Project author
username of current user (default) | character vector

Name of project author, specified as a character vector.

For more information, see -author.
Example: opts.Author = 'JaneDoe'

ImportComments — Import comments and justifications from previous analysis
character vector

To import comments and justifications from a previous analysis, specify the path to the
results folder of the previous analysis.

For more information, see -import-comments
Example: opts.ImportComments =
fullfile(polyspaceroot,'polyspace','examples','cxx','Bug_Finder_Exam
ple','Module_1','BF_Result')

Prog — Project name
PolyspaceProject (default) | character vector

Project name, specified as a character vector.

For more information, see -prog.

1 Polyspace Bug Finder Server Commands

1-120

Example: opts.Prog = 'myProject'

ResultsDir — Location to store results
folder path

Location to store results, specified as a folder path. By default, the results are stored in
the current folder.

For more information, see -results-dir.
Example: opts.ResultsDir = 'C:\project\myproject\results\'

Sources — Source files
cell array of files

Source files to analyze, specified as a cell array of files.

To specify all files in a folder, use folder path followed by *, for instance, 'C:\src*'. To
specify all files in a folder and its subfolders, use folder path followed by **, for instance,
'C:\src**'. The notation follows the syntax of the dir function. See also .

For more information, see -sources.
Example: opts.Sources = {'file1.c', 'file2.c', 'file3.c'}
Example: opts.Sources = {'project/src1/file1.c', 'project/src2/
file2.c', 'project/src3/file3.c'}

Version — Project version number
1.0 (default) | character array of a number

Version number of project, specified as a character array of a number. This option is
useful if you upload your results to Polyspace Metrics. If you increment version numbers
each time that you reanalyze your object, you can compare the results from two versions
in Polyspace Metrics.

For more information, see -v[ersion].
Example: opts.Version = '2.3'

 polyspace.Project.Configuration Properties

1-121

See Also

Topics
“Analysis Options”

Introduced in R2017a

1 Polyspace Bug Finder Server Commands

1-122

copyTo
Class: polyspace.Options
Package: polyspace

Copy common settings between Polyspace options objects

Syntax
optsFrom.copyTo(optsTo)

Description
optsFrom.copyTo(optsTo) copies the common options from optsFrom to optsTo.
The options objects do not need to be the same type of options object. This method copies
only properties that are common between the two objects.

Input Arguments
optsFrom — Options object you want to copy properties from
polyspace.Options or polyspace.ModelLinkOptions object

Option object that you want to copy properties from, specified as a polyspace.Options
or polyspace.ModelLinkOptions object.
Example: opts = polyspace.Options;

optsTo — Options object you want to copy properties to
polyspace.Options object

Option object that you want to copy properties to, specified as a polyspace.Options or
polyspace.ModelLinkOptions object.
Example: opts = polyspace.Options;

 copyTo

1-123

Examples

Copy Polyspace Options Object

This example shows how to set the properties of one options object and then copy that
object to another one.

Create a Polyspace options object and set properties.

opts1 = polyspace.Options();
opts1.Prog = 'DataRaceProject';
opts1.Sources = {'datarace.c'};
opts1.TargetCompiler.Compiler = 'gnu4.9';

Create another object and use copyTo to copy over options from the previous object.

opts2 = polyspace.Options();
opts1.copyTo(opts2);

See Also
polyspace.Options | polyspace.Options.generateProject

Introduced in R2016b

1 Polyspace Bug Finder Server Commands

1-124

generateProject
Class: polyspace.Options
Package: polyspace

Generate psprj project from options object

Syntax
opts.generateProject(projectName)

Description
opts.generateProject(projectName) creates a .psprj project called
projectName from the options specified in the polyspace.Options object opts. You
can open a .psprj project in the user interface of the Polyspace desktop products.

Input Arguments
opts — Options object to convert into a psprj file
polyspace.Options or polyspace.ModelLinkOptions object

Option object convert into a psprj file, specified as a polyspace.Options or
polyspace.ModelLinkOptions object.
Example: opts = polyspace.Options;

projectName — Project file name
character vector

Project file name specified as a character vector. This argument is used as the name of
the psprj file.
Example: 'myProject'

 generateProject

1-125

Examples

Generate Project from a Bug Finder Options Object

This example shows how to create and use a Polyspace project that was generated from
an options object.

Create a Bug Finder object and set properties.

sources = fullfile(polyspaceroot,'polyspace','examples','cxx','Bug_Finder_Example',...
 'sources','numerical.c');
opts = polyspace.Options();
opts.Prog = 'MyProject';
opts.Sources = {sources};
opts.TargetCompiler.Compiler = 'gnu4.7';

Generate a Polyspace project. Name the project using the Prog property.

psprj = opts.generateProject(opts.Prog);

Run a Bug Finder analysis using one of these commands. Both commands produce
identical analysis results. The only difference is that the psprj project can be rerun in
the Polyspace interface.

polyspaceBugFinder(psprj, '-nodesktop');
polyspaceBugFinder(opts);

To run a Code Prover analysis, use polyspaceCodeProver instead of
polyspaceBugFinder.

Tips
If you want to include an options object in a pslinkoptions object:

1 Use this method to convert your object to a project.
2 Add the project to the pslinkoptions property PrjConfig.
3 Turn on the property EnablePrjConfig.

1 Polyspace Bug Finder Server Commands

1-126

See Also
polyspace.Options | polyspace.Options.copyTo

Introduced in R2016b

 generateProject

1-127

toScript
Class: polyspace.Options
Package: polyspace

Add Polyspace options object definition to a script

Syntax
filePath = opts.toScript(fileName,positionInScript)

Description
filePath = opts.toScript(fileName,positionInScript) adds the properties of
a polyspace.Options object to a MATLAB script. The script shows the values assigned
to all the properties of the object. You can run the script later to define the object in the
MATLAB workspace and use it.

Input Arguments
opts — Options object with Polyspace analysis options
polyspace.Options or polyspace.ModelLinkOptions object

Option object to store in MATLAB script, specified as a polyspace.Options or
polyspace.ModelLinkOptions object.
Example: opts = polyspace.Options;

fileName — Script name
character vector

Name or path to script, specified as a character vector. If you specify a relative path, the
script is created in subfolder of the current working folder.
Example: 'runPolyspace.m'

1 Polyspace Bug Finder Server Commands

1-128

positionInScript — Where to add object definition
'create' (default) | 'append'

Position in script where the object properties are added, specified as 'create' or
'append'. If you specify 'append', the object properties are added to the end of an
existing script. Otherwise, a new script is created.

Output Arguments
filePath — Full path to script
character vector

Full path to script, specified as a character vector.
Example: 'C:\myScripts\runPolyspace.m'

See Also
polyspace.Options | polyspace.Options.copyTo |
polyspace.Options.generateProject

Introduced in R2017b

 toScript

1-129

run
Class: polyspace.Project
Package: polyspace

Run a Polyspace analysis

Syntax
proj.run(product)

Description
status = proj.run(product) runs a Polyspace Bug Finder or Polyspace Code Prover
analysis using the configuration specified in the polyspace.Project object proj. The
analysis results are also stored in proj.

Input Arguments
proj — Polyspace project
polyspace.Project object

Polyspace project with configuration and results, specified as a polyspace.Project
object.

product — Type of analysis
'bugFinder' | 'codeProver'

Type of analysis to run.

Output Arguments
status — Results of a Code Prover analysis
true | false

1 Polyspace Bug Finder Server Commands

1-130

Status of analysis. If the analysis fails, the status is false. Otherwise, it is true.

The analysis can fail for multiple reasons:

• You provide source files that do not exist.
• None of your files compile. Even if one file compiles, unless you set the property

StopWithCompileError to true, the analysis succeeds and returns a true status.

There can be many other reasons why the analysis fails. If the analysis fails, in your
results folder, check the log file. You can see the results folder using the Configuration
property of the polyspace.Project object:

proj = polyspace.Project;
proj.Configuration.ResultsDir

The log file is named Polyspace_R20##n_ProjectName_date-time.log.

Examples
Read Results to MATLAB Tables

Run a Polyspace Bug Finder analysis on the demo file numerical.c. Configure these
options:

• Specify GCC 4.9 as your compiler.
• Save the results in a results subfolder of the current working folder.

proj = polyspace.Project

% Configure analysis
proj.Configuration.Sources = {fullfile(polyspaceroot, 'polyspace', ...
 'examples', 'cxx', 'Bug_Finder_Example', 'sources', 'numerical.c')};
proj.Configuration.TargetCompiler.Compiler = 'gnu4.9';
proj.Configuration.ResultsDir = fullfile(pwd,'results');

% Run analysis
bfStatus = proj.run('bugFinder');

 run

1-131

% Read results
bfSummary = proj.Results.getSummary('defects');

Introduced in R2017b

1 Polyspace Bug Finder Server Commands

1-132

getSummary
Class: polyspace.BugFinderResults
Package: polyspace

View number of defects organized by defect type

Syntax
resObj.getSummary(resultsType)

Description
resSummary = resObj.getSummary(resultsType) returns the distribution of results
of type resultsType in a Bug Finder result set denoted by the
polyspace.BugFinderResults object resObj. For instance, if you choose to see
defects, you can see how many defects of each type are present in the result set, for
instance, how many non-initialized variables or declaration mismatches.

Input Arguments
resultsType — Type of Bug Finder analysis result
'defects' (default) | 'misraC' | 'misraCAGC' | 'misraCPP' | 'misraC2012' |
'jsf' | 'metrics' | 'customRules'

Type of result, specified as a character vector.

Entry Meaning
'defects' Bugs or defects.
'misraC' MISRA C:2004 rules.
'misraCAGC' MISRA C:2004 rules for generated code.
'misraCPP' MISRA® C++ rules.

 getSummary

1-133

Entry Meaning
'misraC2012' MISRA C:2012 rules.
'jsf' JSF® C++ rules.
'metrics' Code complexity metrics.
'customRules' Custom rules enforcing naming conventions

for identifiers.

Output Arguments
resSummary — Distribution of defects by defect type
table

Distribution of defects by defect type, specified as a table. For instance, an extract of the
table looks like this:

Category Defect Impact Total
Concurrency Data race High 2
Concurrency Deadlock High 1
Data flow Non-initialized

variable
High 2

The table above shows that the result set contains two data races, one deadlock and two
non-initialized variables.

For more information on MATLAB tables, see “Tables” (MATLAB).

Examples
Copy Existing Results to MATLAB Tables

This example shows how to read Bug Finder analysis results from MATLAB.

Copy a demo result set to a temporary folder.

resPath=fullfile(polyspaceroot,'polyspace','examples','cxx','Bug_Finder_Example', ...
'Module_1','BF_Result');

1 Polyspace Bug Finder Server Commands

1-134

userResPath = tempname;
copyfile(resPath,userResPath);

Create the results object.

resObj = polyspace.BugFinderResults(userResPath);

Read results to MATLAB tables using the object.

resSummary = resObj.getSummary('defects');
resTable = resObj.getResults();

Run Analysis and Read Results to MATLAB Tables

Run a Polyspace Bug Finder analysis on the demo file numerical.c. Configure these
options:

• Specify GCC 4.9 as your compiler.
• Save the results in a results subfolder of the current working folder.

proj = polyspace.Project

% Configure analysis
proj.Configuration.Sources = {fullfile(polyspaceroot, 'polyspace', ...
 'examples', 'cxx', 'Bug_Finder_Example', 'sources', 'numerical.c')};
proj.Configuration.TargetCompiler.Compiler = 'gnu4.9';
proj.Configuration.ResultsDir = fullfile(pwd,'results');

% Run analysis
bfStatus = proj.run('bugFinder');

% Read results
bfSummary = proj.Results.getSummary('defects');

See Also
polyspace.BugFinderResults

Topics
“Defects” (Polyspace Bug Finder Access)
“Bug Finder Defect Groups”

 getSummary

1-135

Introduced in R2017a

1 Polyspace Bug Finder Server Commands

1-136

getResults
Class: polyspace.BugFinderResults
Package: polyspace

Read Bug Finder results into MATLAB table

Syntax
getResults(content)

Description
resTable = getResults(content) returns a table showing all results in a Bug Finder
result set denoted by the polyspace.BugFinderResults object resObj. You can
manipulate the table to produce graphs and statistics about your results that you cannot
obtain readily from the user interface.

Input Arguments
content — Result information to include
'full' (default) | 'readable'

Amount of information to be included for each result. If you specify 'full', all
information is included. If you specify 'readable', the following information is not
included:

• ID: Unique number for a result for the current analysis.
• Group: Defect groups (Polyspace Bug Finder Access), MISRA C:2012 groups

(Polyspace Bug Finder Access), etc.
• Status, Severity, Comment: Information that you enter about a result.

If you do not specify this argument, the full table is included.

 getResults

1-137

Output Arguments
resTable — Results of a Bug Finder analysis
table

Table showing all results from a single Bug Finder analysis. For each result, the table has
information such as file, family, and so on. If a particular information is not available for a
result, the entry in the table states <undefined>.

Examples

Copy Existing Results to MATLAB Tables

This example shows how to read Bug Finder analysis results from MATLAB.

Copy a demo result set to a temporary folder.

resPath = fullfile(polyspaceroot,'polyspace','examples','cxx','Bug_Finder_Example', ...
'Module_1','BF_Result');
userResPath = tempname;
copyfile(resPath,userResPath);

Create the results object.

resObj = polyspace.BugFinderResults(userResPath);

Read results to MATLAB tables using the object.

resSummary = getSummary (resObj);
resTable = getResults (resObj);

Run Analysis and Read Results to MATLAB Tables

Run a Polyspace Bug Finder analysis on the demo file numerical.c. Configure these
options:

• Specify GCC 4.9 as your compiler.
• Save the results in a results subfolder of the current working folder.

proj = polyspace.Project

1 Polyspace Bug Finder Server Commands

1-138

% Configure analysis
proj.Configuration.Sources = {fullfile(polyspaceroot, 'polyspace', ...
 'examples', 'cxx', 'Bug_Finder_Example', 'sources', 'numerical.c')};
proj.Configuration.TargetCompiler.Compiler = 'gnu4.9';
proj.Configuration.ResultsDir = fullfile(pwd,'results');

% Run analysis
bfStatus = proj.run('bugFinder');

% Read results
bfSummary = proj.Results.getResults('readable');

See Also
polyspace.BugFinderResults

Introduced in R2017a

 getResults

1-139

Option Descriptions

2

Source code language (-lang)
Specify language of source files

Description
Specify the language of your source files. Before specifying other configuration options,
choose this option because other options change depending on your language selection.

If you add files during project setup, the language selection can change from the default.

Files Added Source Code Language
Only files with extension .c C
Only files with extension .cpp or .cc CPP
Files with extension .c, .cpp, and .cc C-CPP

Set Option
User interface (desktop products only): In your project configuration, the option is on
the Target & Compiler node. See “Dependencies” on page 2-3 for ways in which the
source code language can be automatically determined.

Command line: Use the option -lang. See “Command-Line Information” on page 2-3.

Settings
Default: Based on file extensions.

C
If your project contains only C files, choose this setting. This value restricts the
verification to C language conventions. All files are interpreted as C files, regardless
of their file extension.

2 Option Descriptions

2-2

CPP
If your project contains only C++ files, choose this setting. This value restricts the
verification to C++ language conventions. All files are interpreted as C++ files,
regardless of their file extension.

C-CPP
If your project contains C and C++ source files, choose this setting. This value allows
for C and C++ language conventions. .c files are interpreted as C files. Other file
extensions are interpreted as C++ files.

Dependencies
• The language option allows and disallows many options and option values. Some

options change depending on your language selection. For more information, see the
individual analysis option pages.

• If you create a Polyspace project or options file from your build system using the
polyspace-configure command or polyspaceConfigure function, the value of
this option is determined by the file extensions.

For a project with both .c and .cpp files, the language option C-CPP is used. In the
subsequent analysis, each file is compiled based on the language standard determined
by the file extensions.

Command-Line Information
Parameter: -lang
Value: c | cpp| c-cpp
Default: Based on file extensions
Example (Bug Finder): polyspace-bug-finder -lang c-cpp -sources
"file1.c,file2.cpp"
Example (Code Prover): polyspace-code-prover -lang cpp -sources
"file1.cpp,file2.cpp"
Example: polyspace-bug-finder-server -lang c-cpp -sources
"file1.c,file2.cpp"
Example (Bug Finder): polyspace-bug-finder -lang c -sources
"file1.c,file2.c"
Example (Code Prover): polyspace-code-prover -lang c -sources
"file1.c,file2.c"

 Source code language (-lang)

2-3

Example (Bug Finder Server): polyspace-bug-finder-server -lang c -
sources "file1.c,file2.c"
Example (Code Prover Server): polyspace-code-prover-server -lang c -
sources "file1.c,file2.c"

See Also
C standard version (-c-version) | C++ standard version (-cpp-version)

2 Option Descriptions

2-4

C standard version (-c-version)
Specify C language standard followed in source code

Description
Specify the C language standard that you follow in your source code.

Set Option
User interface (desktop products only): In your project configuration, the option is on
the Target & Compiler node. See “Dependencies” on page 2-6 for other options that
you must enable.

Command line: Use the option -c-version. See “Command-Line Information” on page
2-6.

Why Use This Option
Use this option so that Polyspace can allow features specific to a C standard version
during compilation. For instance, if you compile with GCC using the flag -ansi or -
std=c90, specify c90 for this option. If you are not sure of the language standard, specify
defined-by-compiler.

For instance, suppose you use the boolean data type _Bool in your code. This type is
defined in the C99 standard but unknown in prior standards such as C90. If the Polyspace
compilation follows the C90 standard, you can see compilation errors.

Some MISRA C rules are different based on whether you use the C90 or C99 standard.
For instance, MISRA C C:2012 Rule 5.2 requires that identifiers in the same scope and
name space shall be distinct. If you use the C90 standard, different identifiers that have
the same first 31 characters violate this rule. If you use the C99 standard, the number of
characters increase to 63.

 C standard version (-c-version)

2-5

Settings
Default: defined-by-compiler

defined-by-compiler
The analysis uses a standard based on your specification for Compiler (-
compiler).

See “C/C++ Language Standard Used in Polyspace Analysis”.

c90
The analysis uses the C90 Standard (ISO/IEC 9899:1990).

c99
The analysis uses the C99 Standard (ISO/IEC 9899:1999).

c11
The analysis uses the C11 Standard (ISO/IEC 9899:2011).

Dependencies
• This option is available only if you set Source code language (-lang) to C or C-

CPP.
• If you create a project or options file from your build system using the polyspace-

configure command or polyspaceConfigure function, the value of this option is
automatically determined from your build system.

If the build system uses different standards for different files, the subsequent
Polyspace analysis can emulate your build system and use different standards for
compiling those files. If you open such a project in the Polyspace user interface, the
option value is shown as defined-by-compiler. However, instead of one standard,
Polyspace uses the hidden option -options-for-sources to associate different
standards with different files.

Command-Line Information
Parameter: -c-version

2 Option Descriptions

2-6

Value: defined-by-compiler | c90 | c99 | c11
Default: defined-by-compiler
Example (Bug Finder): polyspace-bug-finder -lang c -sources
"file1.c,file2.c" -c-version c90
Example (Code Prover): polyspace-code-prover -lang c -sources
"file1.c,file2.c" -c-version c90
Example (Bug Finder Server): polyspace-bug-finder-server -lang c -
sources "file1.c,file2.c" -c-version c90
Example (Code Prover Server): polyspace-code-prover-server -lang c -
sources "file1.c,file2.c" -c-version c90

See Also
C++ standard version (-cpp-version) | Source code language (-lang)

Topics
“Prepare Scripts for Polyspace Analysis”
“C/C++ Language Standard Used in Polyspace Analysis”
“C11 Language Elements Supported in Polyspace”

 C standard version (-c-version)

2-7

C++ standard version (-cpp-version)
Specify C++ language standard followed in source code

Description
Specify the C++ language standard that you follow in your source code.

Set Option
User interface (desktop products only): In your project configuration, the option is on
the Target & Compiler node. See “Dependencies” on page 2-9 for other options that
you must enable.

Command line: Use the option -cpp-version. See “Command-Line Information” on
page 2-10.

Why Use This Option
Use this option so that Polyspace can allow features from a specific version of the C++
language standard during compilation. For instance, if you compile with GCC using the
flag -std=c++11 or -std=gnu++11, specify cpp11 for this option. If you are not sure of
the language standard, specify defined-by-compiler.

For instance, suppose you use range-based for loops. This type of for loop is defined in
the C++11 standard but unrecognized in prior standards such as C++03. If the Polyspace
compilation uses the C++03 standard, you can see compilation errors.

To check if your compiler allows features specific to a standard, compile code with macros
specific to the standard using compiler settings that you typically use. For instance, to
check for C++11-specific features, compile this code. The code contains a C++11-specific
keyword nullptr. If the macro __cplusplus is not 201103L (indicating C++11), this
keyword is used and causes a compilation error.

#if defined(__cplusplus) && __cplusplus >= 201103L
 /* C++11 compiler */
#else

2 Option Descriptions

2-8

 void* ptr = nullptr;
#endif

If the code compiles, use cpp11 for this option.

Settings
Default: defined-by-compiler

defined-by-compiler
The analysis uses a standard based on your specification for Compiler (-
compiler).

See “C/C++ Language Standard Used in Polyspace Analysis”.

cpp03
The analysis uses the C++03 Standard (ISO/IEC 14882:2003).

cpp11
The analysis uses the C++11 Standard (ISO/IEC 14882:2011).

cpp14
The analysis uses the C++14 Standard (ISO/IEC 14882:2014).

Dependencies
• This option is available only if you set Source code language (-lang) to CPP or

C-CPP.
• If you create a project or options file from your build system using the polyspace-

configure command or polyspaceConfigure function, the value of this option is
automatically determined from your build system.

If the build system uses different standards for different files, the subsequent
Polyspace analysis can emulate your build system and use different standards for
compiling those files. If you open such a project in the Polyspace user interface, the
option value is shown as defined-by-compiler. However, instead of one standard,
Polyspace uses multiple standards for compiling the files. The analysis uses the hidden
option -options-for-sources to associate different standards with different files.

 C++ standard version (-cpp-version)

2-9

Command-Line Information
Parameter: -cpp-version
Value: defined-by-compiler | cpp03 | cpp11 | cpp14
Default: defined-by-compiler
Example (Bug Finder): polyspace-bug-finder -lang c -sources
"file1.c,file2.c" -cpp-version cpp11
Example (Code Prover): polyspace-code-prover -lang c -sources
"file1.c,file2.c" -cpp-version cpp11
Example (Bug Finder Server): polyspace-bug-finder-server -lang c -
sources "file1.c,file2.c" -cpp-version cpp11
Example (Code Prover Server): polyspace-code-prover-server -lang c -
sources "file1.c,file2.c" -cpp-version cpp11

See Also
C standard version (-c-version) | Source code language (-lang)

Topics
“Prepare Scripts for Polyspace Analysis”
“C/C++ Language Standard Used in Polyspace Analysis”
“C++11 Language Elements Supported in Polyspace”
“C++14 Language Elements Supported in Polyspace”

2 Option Descriptions

2-10

Compiler (-compiler)
Specify the compiler that you use to build your source code

Description
Specify the compiler that you use to build your source code.

Polyspace fully supports the most common compilers used to develop embedded
applications. See the list below. For these compilers, you can run analysis simply by
specifying your compiler and target processor. For other compilers, specify generic as
compiler name. If you face compilation errors, explicitly define compiler-specific
extensions to work around the errors.

Set Option
User interface (desktop products only): In your project configuration, the option is on
the Target & Compiler node.

Command line: Use the option -compiler. See “Command-Line Information” on page
2-19.

Why Use This Option
Polyspace uses this information to interpret syntax that is not part of the C/C++
Standard, but comes from language extensions.

For example, the option allows additional language keywords, such as sfr, sbit, and
bit. If you do not specify your compiler, these additional keywords can cause compilation
errors during Polyspace analysis.

Polyspace does not actually invoke your compiler for compilation. In particular:

• You cannot specify compiler flags directly in the Polyspace analysis. To emulate your
compiler flags, trace your build command or manually specify equivalent Polyspace
analysis options. See “Specify Target Environment and Compiler Behavior”.

 Compiler (-compiler)

2-11

• Code Prover has a linking policy that is stricter than regular compilers. For instance, if
your compiler allows declaration mismatches with specific compiler options, you
cannot emulate this linking policy in Code Prover. See “Troubleshoot Compilation and
Linking Errors” (Polyspace Code Prover Server).

Settings
Default: generic

generic
Analysis allows only standard syntax.

The language standard is determined by your choice for the following options:

• C standard version (-c-version)
• C++ standard version (-cpp-version)

If you do not specify a standard explicitly, the standard depends on your choice of
compiler.

gnu3.4
Analysis allows GCC 3.4 syntax.

gnu4.6
Analysis allows GCC 4.6 syntax.

gnu4.7
Analysis allows GCC 4.7 syntax.

For unsupported GCC extensions, see “Limitations” on page 2-16.
gnu4.8

Analysis allows GCC 4.8 syntax.

For unsupported GCC extensions, see “Limitations” on page 2-16.
gnu4.9

Analysis allows GCC 4.9 syntax.

For unsupported GCC extensions, see “Limitations” on page 2-16.

2 Option Descriptions

2-12

gnu5.x
Analysis allows GCC 5.1, 5.2, 5.3, and 5.4 syntax.

If you select gnu5.x, the option Target processor type (-target) shows only
a subset of targets that are allowed for a GCC based compiler. For other targets, use
the option Generic target options.

For unsupported GCC extensions, see “Limitations” on page 2-16.
gnu6.x

Analysis allows GCC 6.1, 6.2, and 6.3 syntax.

If you select gnu6.x, the option Target processor type (-target) shows only
a subset of targets that are allowed for a GCC based compiler. For other targets, use
the option Generic target options.

For unsupported GCC extensions, see “Limitations” on page 2-16.
gnu7.x

Analysis allows GCC 7.1, 7.2, and 7.3 syntax.

If you select gnu7.x, the option Target processor type (-target) shows only
a subset of targets that are allowed for a GCC based compiler. For other targets, use
the option Generic target options.

For unsupported GCC extensions, see “Limitations” on page 2-16.
clang3.x

Analysis allows Clang 3.5, 3.6, 3.7, 3.8, and 3.9 syntax.
clang4.x

Analysis allows Clang 4.0.0, and 4.0.1 syntax.
clang5.x

Analysis allows Clang 5.0.0, and 5.0.1 syntax.
visual9.0

Analysis allows Microsoft® Visual C++ 2008 syntax.
visual10.0

Analysis allows Microsoft Visual C++ 2010 syntax.

This option implicitly enables the option -no-stl-stubs.

 Compiler (-compiler)

2-13

visual11.0
Analysis allows Microsoft Visual C++ 2012 syntax.

This option implicitly enables the option -no-stl-stubs.
visual12.0

Analysis allows Microsoft Visual C++ 2013 syntax.

This option implicitly enables the option -no-stl-stubs.
visual14.0

Analysis allows Microsoft Visual C++ 2015 syntax (supports Microsoft Visual
Studio®update 2).

This option implicitly enables the option -no-stl-stubs.
visual15.x

Analysis allows Microsoft Visual C++ 2017 syntax (supports Microsoft Visual Studio
versions 15.0 up to 15.7).

This option implicitly enables the option -no-stl-stubs.
keil

Analysis allows non-ANSI® C syntax and semantics associated with the Keil products
from ARM (www.keil.com).

iar
Analysis allows non-ANSI C syntax and semantics associated with the compilers from
IAR Systems (www.iar.com).

armcc
Analysis allows non-ANSI C syntax and semantics associated with the ARM® v5
compiler.

If you select armcc, in the user interface of the Polyspace desktop products, the
option Target processor type (-target) shows only the targets that are
allowed for the ARM v5 compiler. See ARM v5 Compiler (-compiler armcc).

armclang
Analysis allows non-ANSI C syntax and semantics associated with the ARM v6
compiler.

2 Option Descriptions

2-14

https://www.keil.com/
https://www.iar.com/

If you select armclang, in the user interface of the Polyspace desktop products, the
option Target processor type (-target) shows only the targets that are
allowed for the ARM v6 compiler. See ARM v6 Compiler (-compiler armclang).

codewarrior
Analysis allows non-ANSI C syntax and semantics associated with the NXP
CodeWarrior® compiler.

If you select codewarrior, in the user interface of the Polyspace desktop products,
the option Target processor type (-target) shows only the targets that are
allowed for the NXP CodeWarrior compiler. See NXP CodeWarrior Compiler (-
compiler codewarrior).

diab
Analysis allows non-ANSI C syntax and semantics associated with the Wind River®

Diab compiler.

If you select diab, in the user interface of the Polyspace desktop products, the option
Target processor type (-target) shows only the targets that are allowed for
the NXP CodeWarrior compiler. See Diab Compiler (-compiler diab).

greenhills
Analysis allows non-ANSI C syntax and semantics associated with a Green Hills®

compiler.

If you select greenhills, in the user interface of the Polyspace desktop products,
the option Target processor type (-target) shows only the targets that are
allowed for a Green Hills compiler. See Green Hills Compiler (-compiler
greenhills).

iar-ew
Analysis allows non-ANSI C syntax and semantics associated with the IAR Embedded
Workbench compiler.

If you select iar-ew, in the user interface of the Polyspace desktop products, the
option Target processor type (-target) shows only the targets that are
allowed for the IAR Embedded Workbench compiler. See IAR Embedded Workbench
Compiler (-compiler iar-ew).

renesas
Analysis allows non-ANSI C syntax and semantics associated with the Renesas®

compiler.

 Compiler (-compiler)

2-15

If you select renesas, in the user interface of the Polyspace desktop products, the
option Target processor type (-target) shows only the targets that are
allowed for the Renesas compiler. See Renesas Compiler (-compiler
renesas).

tasking
Analysis allows non-ANSI C syntax and semantics associated with the TASKING
compiler.

If you select tasking,in the user interface of the Polyspace desktop products, the
option Target processor type (-target) shows only the targets that are
allowed for the TASKING compiler. See TASKING Compiler (-compiler
tasking).

ti
Analysis allows non-ANSI C syntax and semantics associated with the Texas
Instruments™compiler.

If you select ti, in the user interface of the Polyspace desktop products, the option
Target processor type (-target) shows only the targets that are allowed for
the Texas Instruments compiler. See Texas Instruments Compiler (-compiler
ti).

Tips
• If you use a Visual Studio compiler, you must use a Target processor type (-

target) option that sets long long to 64 bits. Compatible targets include: i386,
sparc, m68k, powerpc, tms320c3x, sharc21x61, mpc5xx, x86_64, or mcpu with
long long set to 64 (-long-long-is-64bits at the command line).

• If you use the option Check JSF AV C++ rules (-jsf-coding-rules), select
the compiler generic. If you use another compiler, Polyspace cannot check the JSF
coding rules that require conforming to the ISO standard. For example, AV Rule 8: “All
code shall conform to ISO/IEC 14882:2002(E) standard C++.”

Limitations
Polyspace does not support certain features of these compilers:

2 Option Descriptions

2-16

• GNU compilers (version 4.7 or later):

• Nested functions.

For instance, the function bar is nested in function foo:

int foo (int a, int b)
{
 int bar (int c) { return c * c; }

 return bar (a) + bar (b);
}

• Binary operations with vector types where one operand uses the shorthand
notation for uniform vectors.

For instance, in the addition operation, 2+a, 2 is used as a shorthand notation for
{2,2,2,2}.

typedef int v4si __attribute__ ((vector_size (16)));
v4si res, a = {1,2,3,4};

res = 2 + a; /* means {2,2,2,2} + a */
• Forward declaration of function parameters.

For instance, the parameter len is forward declared:

void func (int len; char data[len][len], int len)
{
 /* … */
}

• Complex integer data types.

However, complex floating point data types are supported.
• Initialization of structures with flexible array members using an initialization list.

For instance, the structure S has a flexible array member tab. A variable of type S
is directly initialized with an initialization list.

struct S {
 int x;
 int tab[]; /* flexible array member - not supported */
};
struct S s = { 0, 1, 2} ;

 Compiler (-compiler)

2-17

You see a warning during analysis and a red check in the results when you
dereference, for instance, s.tab[1].

• 128-bit variables.

Polyspace cannot analyze this data type semantically. Bug Finder allows use of 128-
bit data types, but Code Prover shows a compilation error if you use such a data
type, for instance, the GCC extension __float128.

• GNU compilers version 7.x:

• Type names _FloatN and _FloatNx are not semantically supported. The analysis
treats them as type float, double, or long double.

• Constants of type _FloatN or _FloatNx with suffixes fN, FN, or fNx, such as
1.2f123 or 2.3F64x are not supported.

• Visual Studio compilers:

• C++ Accelerated Massive Parallelism (AMP).

C++ AMP is a Visual Studio feature that accelerates your C++ code execution for
certain types of data-parallel hardware on specific targets. You typically use the
restrict keyword to enable this feature.

void Buffer() restrict(amp)
{
 ...
}

• __assume statements.

You typically use __assume with a condition that is false. The statement indicates
that the optimizer must assume the condition to be henceforth true. Code Prover
cannot reconcile this contradiction. You get the error:

Asked for compulsory presence of absent entity : assert
• Managed Extensions for C++ (required for the .NET Framework), or its successor,

C++/CLI (C++ modified for Common Language Infrastructure)
• __declspec keyword with attributes other than noreturn, nothrow, selectany

or thread.

2 Option Descriptions

2-18

Command-Line Information
Parameter: -compiler
Value: generic | gnu3.4 | gnu4.6 | gnu4.7 | gnu4.8 | gnu4.9 | gnu5.x |
gnu6.x | gnu7.x | clang3.x | clang4.x | clang5.x | visual9.0 |
visual10.0 | visual11.0 | visual12.0 | visual14.0 | visual15.x |
keil | iar | armcc | armclang | codewarrior | diab | greenhills |
iar-ew | renesas | tasking | ti
Default: generic
Example 1 (Bug Finder): polyspace-bug-finder -lang c -sources
"file1.c,file2.c" -compiler gnu4.6
Example 2 (Bug Finder): polyspace-bug-finder -lang cpp -sources
"file1.cpp,file2.cpp" -compiler visual9.0
Example 1 (Code Prover): polyspace-code-prover -lang c -sources
"file1.c,file2.c" -lang c -compiler gnu4.6
Example 2 (Code Prover): polyspace-code-prover -lang cpp -sources
"file1.cpp,file2.cpp" -compiler visual9.0
Example 1 (Bug Finder Server): polyspace-bug-finder-server -lang c -
sources "file1.c,file2.c" -compiler gnu4.6
Example 2 (Bug Finder Server): polyspace-bug-finder-server -lang cpp -
sources "file1.cpp,file2.cpp" -compiler visual9.0
Example 1 (Code Prover Server): polyspace-code-prover-server -lang c -
sources "file1.c,file2.c" -lang c -compiler gnu4.6
Example 2 (Code Prover Server): polyspace-code-prover-server -lang cpp -
sources "file1.cpp,file2.cpp" -compiler visual9.0

See Also
C standard version (-c-version) | C++ standard version (-cpp-version) |
Target processor type (-target)

Topics
“Prepare Scripts for Polyspace Analysis”
“Troubleshoot Compilation Errors”
“Specify Target Environment and Compiler Behavior”
“Supported Keil or IAR Language Extensions”

 Compiler (-compiler)

2-19

Target processor type (-target)
Specify size of data types and endianness by selecting a predefined target processor

Description
Specify the processor on which you deploy your code.

The target processor determines the sizes of fundamental data types and the endianness
of the target machine. You can analyze code intended for an unlisted processor type by
using one of the other processor types, if they share common data properties.

Set Option
User interface (desktop products only): In your project configuration, the option is on
the Target & Compiler node. To see the sizes of types, click the Edit button to the right
of the Target processor type drop-down list.

For some compilers, in the user interface, you see only the processors allowed for that
compiler. For these compilers, you also cannot see the data type sizes in the user
interface. See the links in the table below for the data type sizes.

Command line: Use the option -target. See “Command-Line Information” on page 2-
24.

Why Use This Option
You specify a target processor so that some of the Polyspace run-time checks are tailored
to the data type sizes and other properties of that processor.

For instance, a variable can overflow for smaller values on a 32-bit processor such as i386
compared to a 64-bit processor such as x86_64. If you select x86_64 for your Polyspace
analysis, but deploy your code to the i386 processor, your Polyspace results are not
always applicable.

Once you select a target processor, you can specify if the default sign of char is signed or
unsigned. To determine which signedness to specify, compile this code using the compiler
settings that you typically use:

2 Option Descriptions

2-20

#include <limits.h>
int array[(char)UCHAR_MAX]; /* If char is signed, the array size is -1

If the code compiles, the default sign of char is unsigned. For instance, on a GCC
compiler, the code compiles with the -fsigned-char flag and fails to compile with the -
funsigned-char flag.

Settings
Default: i386

This table shows the size of each fundamental data type that Polyspace considers. For
some targets, you can modify the default size by clicking the Edit button to the right of
the Target processor type drop-down list. The optional values for those targets are
shown in [brackets] in the table.

Target cha
r

short int lon
g

long
long

flo
at

doubl
e

long
doublea

ptr Default
sign of
char

endian Align
ment

i386 8 16 32 32 64 32 64 96 32 signed Little 32
sparc 8 16 32 32 64 32 64 128 32 signed Big 64
m68kb 8 16 32 32 64 32 64 96 32 signed Big 64
powerpc 8 16 32 32 64 32 64 128 32 unsigne

d
Big 64

c-167 8 16 16 32 32 32 64 64 16 signed Little 64
tms320c3x 32 32 32 32 64 32 32 64 32 signed Little 32
sharc21x61 32 32 32 32 64 32 32

[64]
32 [64] 32 signed Little 32

necv850 8 16 32 32 32 32 32 64 32 signed Little 32
[16,
8]

hc08c 8 16 16
[32]

32 32 32 32
[64]

32 [64] 16d unsigne
d

Big 32
[16]

hc12 8 16 16
[32]

32 32 32 32
[64]

32 [64] 326 signed Big 32
[16]

 Target processor type (-target)

2-21

Target cha
r

short int lon
g

long
long

flo
at

doubl
e

long
doublea

ptr Default
sign of
char

endian Align
ment

mpc5xx 8 16 32 32 64 32 32
[64]

32 [64] 32 signed Big 32
[16]

c18 8 16 16 32
[24]
e

32 32 32 32 16
[24]

signed Little 8

x86_64 8 16 32 64
[32]
f

64 32 64 128 64 signed Little 64
[32]

mcpu...
(Advanced)g

8
[16]

8 [16] 16
[32]

32 32
[64]

32 32
[64]

32 [64] 16
[32]

signed Little 32
[16,
8]

Targets for
ARM v5
compiler

See ARM v5 Compiler (-compiler armcc).

Targets for
ARM v6
compiler

See ARM v6 Compiler (-compiler armclang).

Targets for
NPX
CodeWarrior
compiler

See NXP CodeWarrior Compiler (-compiler codewarrior).

Targets for
Diab compiler

See Diab Compiler (-compiler diab).

Targets for
Green Hills
compiler

See Green Hills Compiler (-compiler greenhills).

Targets for
IAR
Embedded
Workbench
compiler

See IAR Embedded Workbench Compiler (-compiler iar-ew).

2 Option Descriptions

2-22

Target cha
r

short int lon
g

long
long

flo
at

doubl
e

long
doublea

ptr Default
sign of
char

endian Align
ment

Targets for
Renesas
compiler

See Renesas Compiler (-compiler renesas).

Targets for
TASKING
compiler

See TASKING Compiler (-compiler tasking).

Targets for
Texas
Instruments
compiler

See Texas Instruments Compiler (-compiler ti).

a. For targets where the size of long double is greater than 64 bits, the size used for computations is not always the
same as the size listed in this table. The exceptions are:

• For targets i386, x86_64 and m68k, 80 bits are used for computations, following the practice in common
compilers.

• For the target tms320c3x, 40 bits are used for computation, following the TMS320C3x specifications.
• If you use a Visual compiler, the size of long double used for computations is the same as size of double,

following the specification of Visual C++ compilers.
b. The M68k family (68000, 68020, and so on) includes the “ColdFire” processor
c. Non-ANSI C specified keywords and compiler implementation-dependent pragmas and interrupt facilities are not taken

into account by this support
d. All kinds of pointers (near or far pointer) have 2 bytes (hc08) or 4 bytes (hc12) of width physically.
e. The c18 target supports the type short long as 24 bits in size.
f. Use option -long-is-32bits to support Microsoft C/C++ Win64 target.
g. mcpu is a reconfigurable Micro Controller/Processor Unit target. You can use this type to configure one or more

generic targets. For more information, see Generic target options.

Tips
If your processor is not listed, use a similar processor that shares the same
characteristics, or create an mcpu generic target processor. See Generic target
options.

You can also create a custom target by explicitly stating sizes of fundamental types and so
on with the option -custom-target.

 Target processor type (-target)

2-23

Command-Line Information
Parameter: -target
Value: i386 | sparc | m68k | powerpc | c-167 | tms320c3x | sharc21x61
| necv850 | hc08 | hc12 | mpc5xx | c18 | x86_64 | mcpu
Default: i386
Example (Bug Finder): polyspace-bug-finder -target m68k
Example (Code Prover): polyspace-code-prover -target m68k
Example (Bug Finder Server): polyspace-bug-finder-server -target m68k
Example (Code Prover Server): polyspace-code-prover-server -target m68k

You can override the default values for some targets by using specific command-line
options. See the section Command-Line Options in Generic target options.

See Also
Polyspace Analysis Options
-custom-target

Polyspace Results
Higher Estimate of Local Variable Size | Lower Estimate of Local
Variable Size

Topics
“Prepare Scripts for Polyspace Analysis”
“Specify Target Environment and Compiler Behavior”

2 Option Descriptions

2-24

ARM v5 Compiler (-compiler armcc)
Specify ARM v5 compiler

Description
Specify armcc for the Compiler (-compiler) option if you compile your code with a
ARM v5 compiler. By specifying your compiler, you can avoid compilation errors from
syntax that is not part of the Standard but comes from language extensions.

Then, specify your target processor type. If you select armcc for Compiler, in the user
interface of the Polyspace desktop products, you see only the processors allowed for a
ARM v5 compiler. Your choice of target processor determines the size of fundamental data
types, the endianness of the target machine, and certain keyword definitions.

If you specify the armcc compiler, you must specify the path to your compiler header
files. See “Provide Standard Library Headers for Polyspace Analysis”.

Settings

Command-Line Information
Parameter: -compiler armcc -target
Value: arm
Default: arm
Example (Bug Finder): polyspace-bug-finder -compiler armcc -target arm
Example (Code Prover): polyspace-code-prover -compiler armcc -target
arm
Example (Bug Finder Server): polyspace-bug-finder-server -compiler armcc
-target arm
Example (Code Prover Server): polyspace-code-prover-server -compiler
armcc -target arm

See Also
Compiler (-compiler) | Target processor type (-target)

 ARM v5 Compiler (-compiler armcc)

2-25

Topics
“Prepare Scripts for Polyspace Analysis”
“Specify Target Environment and Compiler Behavior”

Introduced in R2019a

2 Option Descriptions

2-26

ARM v6 Compiler (-compiler armclang)
Specify ARM v6 compiler

Description
Specify armclang for the Compiler (-compiler) option if you compile your code with
a ARM v6 compiler. By specifying your compiler, you can avoid compilation errors from
syntax that is not part of the Standard but comes from language extensions.

Then, specify your target processor type. If you select armclang for Compiler, in the
user interface of the Polyspace desktop products, you see only the processors allowed for
a ARM v6 compiler. Your choice of target processor determines the size of fundamental
data types, the endianness of the target machine, and certain keyword definitions.

If you specify the armclang compiler, you must specify the path to your compiler header
files. See “Provide Standard Library Headers for Polyspace Analysis”.

Settings

Command-Line Information
Parameter: -compiler armclang -target
Value: arm | arm64
Default: arm
Example (Bug Finder): polyspace-bug-finder -compiler armclang -target
arm64
Example (Code Prover): polyspace-code-prover -compiler armclang -target
arm64
Example (Bug Finder Server): polyspace-bug-finder-server -compiler
armclang -target arm64
Example (Code Prover Server): polyspace-code-prover-server -compiler
armclang -target arm64

 ARM v6 Compiler (-compiler armclang)

2-27

See Also
Compiler (-compiler) | Target processor type (-target)

Topics
“Prepare Scripts for Polyspace Analysis”
“Specify Target Environment and Compiler Behavior”

Introduced in R2019a

2 Option Descriptions

2-28

NXP CodeWarrior Compiler (-compiler
codewarrior)
Specify NXP CodeWarrior compiler

Description
Specify codewarrior for Compiler (-compiler) if you compile your code using a
NXP CodeWarrior compiler. By specifying your compiler, you can avoid compilation errors
from syntax that is not part of the Standard but comes from language extensions.

Then, specify your target processor type. If you select codewarrior for Compiler, in the
user interface of the Polyspace desktop products, you see only the processors allowed for
a NXP CodeWarrior compiler. Your choice of target processor determines the size of
fundamental data types, the endianness of the target machine and certain keyword
definitions.

If you specify the codewarrior compiler, you must specify the path to your compiler
header files. See “Provide Standard Library Headers for Polyspace Analysis”.

Settings
To see the default sizes in bits for the fundamental types that the targets use, see the
contextual help.

Command-Line Information
Parameter: -compiler codewarrior -target
Value: s12z | powerpc
Default: s12z
Example (Bug Finder): polyspace-bug-finder -compiler codewarrior -
target powerpc
Example (Code Prover): polyspace-code-prover -compiler codewarrior -
target powerpc

 NXP CodeWarrior Compiler (-compiler codewarrior)

2-29

Example (Bug Finder Server): polyspace-bug-finder-server -compiler
codewarrior -target powerpc
Example (Code Prover Server): polyspace-code-prover-server -compiler
codewarrior -target powerpc

See Also
Compiler (-compiler) | Target processor type (-target)

Topics
“Prepare Scripts for Polyspace Analysis”
“Specify Target Environment and Compiler Behavior”

Introduced in R2018a

2 Option Descriptions

2-30

Diab Compiler (-compiler diab)
Specify the Wind River Diab compiler

Description
Specify diab for Compiler (-compiler) if you compile your code using the Wind River
Diab compiler. By specifying your compiler, you can avoid compilation errors from syntax
that is not part of the Standard but comes from language extensions.

Then, specify your target processor type. If you select diab for Compiler, in the user
interface of the Polyspace desktop products, you see only the processors allowed for the
Diab compiler. Your choice of target processor determines the size of fundamental data
types, the endianness of the target machine and certain keyword definitions.

If you specify the diab compiler, you must specify the path to your compiler header files.
See “Provide Standard Library Headers for Polyspace Analysis”.

The software supports version 5.9.6 and older versions of the Diab compiler.

Settings
To see the default sizes in bits for the fundamental types that the targets use, see the
contextual help.

Tips
If you encounter errors during Polyspace analysis, see “Errors Related to Diab Compiler”.

Command-Line Information
Parameter: -compiler diab -target
Value: i386 | powerpc | arm | coldfire | mips | mcore | rh850 | superh
| tricore

 Diab Compiler (-compiler diab)

2-31

Default: powerpc
Example (Bug Finder): polyspace-bug-finder -compiler diab -target
tricore
Example (Code Prover): polyspace-code-prover -compiler diab -target
tricore
Example (Bug Finder Server): polyspace-bug-finder-server -compiler diab
-target tricore
Example (Code Prover Server): polyspace-code-prover-server -compiler
diab -target tricore

See Also
Compiler (-compiler) | Target processor type (-target)

Topics
“Prepare Scripts for Polyspace Analysis”
“Specify Target Environment and Compiler Behavior”

Introduced in R2016b

2 Option Descriptions

2-32

Green Hills Compiler (-compiler
greenhills)
Specify Green Hills compiler

Description
Specify greenhills for Compiler (-compiler) if you compile your code using a
Green Hills compiler. By specifying your compiler, you can avoid compilation errors from
syntax that is not part of the Standard but comes from language extensions.

Then, specify your target processor type. If you select greenhills for Compiler, in the
user interface of the Polyspace desktop products, you see only the processors allowed for
a Green Hills compiler. Your choice of target processor determines the size of
fundamental data types, the endianness of the target machine and certain keyword
definitions.

If you specify the greenhills compiler, you must specify the path to your compiler
header files. See “Provide Standard Library Headers for Polyspace Analysis”.

Settings
To see the default sizes in bits for the fundamental types that the targets use, see the
contextual help.

Tips
• If you encounter errors during a Polyspace analysis, see “Errors Related to Green Hills

Compiler”
• Polyspace supports the embedded configuration for the i386 target. If your x86 Green

Hills compiler is configured for native Windows development, you can see compilation
errors or incorrect analysis results with Code Prover. Contact Technical Support.

 Green Hills Compiler (-compiler greenhills)

2-33

For instance, Green Hills compilers consider a size of 12 bytes for long double for
embedded targets, but 8 bytes for native Windows. Polyspace considers 12 bytes by
default.

• If you create a Polyspace project from a build command that uses a Green Hills
compiler, the compiler options -filetype and -os_dir are not implemented in the
project. To emulate the -os_dir option, you can explicitly add the path argument of
the option as an include folder to your Polyspace project.

Command-Line Information
Parameter: -compiler greenhills -target
Value: powerpc | powerpc64 | arm | arm64 | tricore | rh850 | arm |
i386 | x86_64
Default: powerpc
Example (Bug Finder): polyspace-bug-finder -compiler greenhills -target
arm
Example (Code Prover): polyspace-code-prover -compiler greenhills -
target arm
Example (Bug Finder Server): polyspace-bug-finder-server -compiler
greenhills -target arm
Example (Code Prover Server): polyspace-code-prover-server -compiler
greenhills -target arm

See Also
Compiler (-compiler) | Target processor type (-target)

Topics
“Prepare Scripts for Polyspace Analysis”
“Specify Target Environment and Compiler Behavior”

Introduced in R2017b

2 Option Descriptions

2-34

IAR Embedded Workbench Compiler (-
compiler iar-ew)
Specify IAR Embedded Workbench compiler

Description
Specify iar-ew for Compiler (-compiler) if you compile your code using a IAR
Embedded Workbench compiler. By specifying your compiler, you can avoid compilation
errors from syntax that is not part of the Standard but comes from language extensions.

Then, specify your target processor type. If you select iar-ew for Compiler, in the user
interface of the Polyspace desktop products, you see only the processors allowed for a
IAR Embedded Workbench compiler. Your choice of target processor determines the size
of fundamental data types, the endianness of the target machine and certain keyword
definitions.

If you specify the iar-ew compiler, you must specify the path to your compiler header
files. See “Provide Standard Library Headers for Polyspace Analysis”.

Settings
To see the default sizes in bits for the fundamental types that the targets use, see the
contextual help.

Tips
Polyspace does not support some constructs specific to the IAR compiler.

For the list of unsupported constructs, see codeprover_limitations.pdf in
polyspaceroot\polyspace\verifier\code_prover_desktop. Here,
polyspaceroot is the MATLAB installation folder, for instance, C:\Program Files
\Polyspace\R2019a.

 IAR Embedded Workbench Compiler (-compiler iar-ew)

2-35

Command-Line Information
Parameter: -compiler iar-ew -target
Value: arm | avr | msp430 | rh850 | rl78
Default: arm
Example (Bug Finder): polyspace-bug-finder -compiler iar-ew -target
rl78
Example (Code Prover): polyspace-code-prover -compiler iar-ew -target
rl78
Example (Bug Finder Server): polyspace-bug-finder-server -compiler iar-
ew -target rl78
Example (Code Prover Server): polyspace-code-prover-server -compiler
iar-ew -target rl78

See Also
Compiler (-compiler) | Target processor type (-target)

Topics
“Prepare Scripts for Polyspace Analysis”
“Specify Target Environment and Compiler Behavior”

Introduced in R2018a

2 Option Descriptions

2-36

Renesas Compiler (-compiler renesas)
Specify Renesas compiler

Description
Specify renesas for the Compiler (-compiler) option if you compile your code with a
Renesas compiler. By specifying your compiler, you can avoid compilation errors from
syntax that is not part of the Standard but comes from language extensions.

Then, specify your target processor type. If you select renesas for Compiler, in the user
interface of the Polyspace desktop products, you see only the processors allowed for a
Renesas compiler. Your choice of target processor determines the size of fundamental
data types, the endianness of the target machine, and certain keyword definitions.

If you specify the renesas compiler, you must specify the path to your compiler header
files. See “Provide Standard Library Headers for Polyspace Analysis”.

Settings
To see the default sizes in bits for the fundamental types that the targets use, see the
contextual help.

Command-Line Information
Parameter: -compiler renesas -target
Value: rl78 | rh850 | rx
Default: rl78
Example (Bug Finder): polyspace-bug-finder -compiler renesas -target rx
Example (Code Prover): polyspace-code-prover -compiler renesas -target
rx
Example (Bug Finder Server): polyspace-bug-finder-server -compiler
renesas -target rx
Example (Code Prover Server): polyspace-code-prover-server -compiler
renesas -target rx

 Renesas Compiler (-compiler renesas)

2-37

See Also
Compiler (-compiler) | Target processor type (-target)

Topics
“Prepare Scripts for Polyspace Analysis”
“Specify Target Environment and Compiler Behavior”

Introduced in R2018b

2 Option Descriptions

2-38

TASKING Compiler (-compiler tasking)
Specify the Altium TASKING compiler

Description
Specify tasking for Compiler (-compiler) if you compile your code using the
Altium® TASKING compiler. By specifying your compiler, you can avoid compilation errors
from syntax that is not part of the Standard but comes from language extensions.

Then, specify your target processor type. If you select tasking for Compiler, in the user
interface of the Polyspace desktop products, you see only the processors allowed for the
TASKING compiler. Your choice of target processor determines the size of fundamental
data types, the endianness of the target machine and certain keyword definitions.

If you specify the tasking compiler, you must specify the path to your compiler header
files. See “Provide Standard Library Headers for Polyspace Analysis”.

The software supports different versions of the TASKING compiler, depending on the
target:

• TriCore: 6.0 and older versions
• C166: 4.0 and older versions
• ARM: 5.2 and older versions
• RH850: 2.2 and older versions

Settings
To see the default sizes in bits for the fundamental types that the targets use, see the
contextual help.

Tips
• Polyspace does not support some constructs specific to the TASKING compiler.

 TASKING Compiler (-compiler tasking)

2-39

For the list of unsupported constructs, see codeprover_limitations.pdf in
polyspaceroot\polyspace\verifier\code_prover_desktop. Here,
polyspaceroot is the Polyspace installation folder, for instance, C:\Program Files
\Polyspace\R2019a.

• The CPU used is TC1793. If you use a different CPU, set the following analysis options
in your project:

• Disabled preprocessor definitions (-U): Undefine the macro
__CPU_TC1793B__.

• Preprocessor definitions (-D): Define the macro __CPU__. Enter
__CPU__=xxx, where xxx is the name of your CPU.

Additionally, define the equivalent of the macro __CPU_TC1793B__ for your CPU.
For instance, enter __CPU_TC1793A__.

Instead of manually specifying your compiler, if you trace your build command
(makefile), Polyspace can detect your CPU and add the required definitions in your
project.

• For some errors related to TASKING compiler-specific constructs, see solutions in
“Errors Related to TASKING Compiler”.

Command-Line Information
Parameter: -compiler tasking -target
Value: tricore | c166 | rh850 | arm
Default: tricore
Example (Bug Finder): polyspace-bug-finder -compiler tasking -target
tricore
Example (Code Prover): polyspace-code-prover -compiler tasking -target
tricore
Example (Bug Finder Server): polyspace-bug-finder-server -compiler
tasking -target tricore
Example (Code Prover Server): polyspace-code-prover-server -compiler
tasking -target tricore

See Also
Compiler (-compiler) | Target processor type (-target)

2 Option Descriptions

2-40

Topics
“Prepare Scripts for Polyspace Analysis”
“Specify Target Environment and Compiler Behavior”

Introduced in R2017a

 TASKING Compiler (-compiler tasking)

2-41

Texas Instruments Compiler (-compiler ti)
Specify Texas Instruments compiler

Description
Specify ti for Compiler (-compiler) if you compile your code using a Texas
Instruments compiler. By specifying your compiler, you can avoid compilation errors from
syntax that is not part of the Standard but comes from language extensions.

Then, specify your target processor type. If you select ti for Compiler, in the user
interface of the Polyspace desktop products, you see only the processors allowed for a
Texas Instruments compiler. Your choice of target processor determines the size of
fundamental data types, the endianness of the target machine and certain keyword
definitions.

If you specify the ti compiler, you must specify the path to your compiler header files.
See “Provide Standard Library Headers for Polyspace Analysis”.

Settings
To see the default sizes in bits for the fundamental types that the targets use, see the
contextual help.

Tips
Polyspace does not support some constructs specific to the Texas Instruments compiler.

For the list of unsupported constructs, see codeprover_limitations.pdf in
polyspaceroot\polyspace\verifier\code_prover_desktop. Here,
polyspaceroot is the Polyspace installation folder, for instance, C:\Program Files
\Polyspace\R2019a.

2 Option Descriptions

2-42

Command-Line Information
Parameter: -compiler ti -target
Value: c28x | c6000 | arm | msp430
Default: c28x
Example (Bug Finder): polyspace-bug-finder -compiler ti -target msp430
Example (Code Prover): polyspace-code-prover -compiler ti -target
msp430
Example (Bug Finder Server): polyspace-bug-finder-server -compiler ti -
target msp430
Example (Code Prover Server): polyspace-code-prover-server -compiler ti
-target msp430

See Also
Compiler (-compiler) | Target processor type (-target)

Topics
“Prepare Scripts for Polyspace Analysis”
“Specify Target Environment and Compiler Behavior”

Introduced in R2018a

 Texas Instruments Compiler (-compiler ti)

2-43

Generic target options
Specify size of data types and endianness by creating your own target processor

Description
If a target processor is not directly supported by Polyspace, you can create your own
target. You specify the target mcpu representing a generic "Micro Controller/Processor
Unit" and then explicitly specify sizes of fundamental data types, endianness and other
characteristics.

Settings
In the user interface of the Polyspace desktop products, the Generic target options
dialog box opens when you set the Target processor type to mcpu. The Target
processor type option is available on the Target & Compiler node in the Configuration
pane.

2 Option Descriptions

2-44

Use the dialog box to specify the name of a new mcpu target, for example My_target.
That new target is added to the Target processor type option list.

Default characteristics of a new target: listed as type [size]

• char [8]
• short [16]
• int [16]
• long [32]
• long long [32]
• float [32]
• double [32]
• long double [32]

 Generic target options

2-45

• pointer [16]
• char is signed
• endianness is little-endian

Dependency
A custom target can only be created when Target processor type (-target) is set
to mcpu.

A custom target is not available when Compiler (-compiler) is set to one of the
visual* options.

Command-Line Options
When using the command line, use -target mcpu along with these target specification
options.

Option Description Available
With

Example

-little-endian Little-endian
architectures are
Less Significant byte
First (LSF). For
example: i386.

Specifies that the
less significant byte
of a short integer
(e.g. 0x00FF) is
stored at the first
byte (0xFF) and the
most significant byte
(0x00) at the second
byte.

mcpu polyspace-bug-finder-
server -lang c -target
mcpu -little-endian

2 Option Descriptions

2-46

Option Description Available
With

Example

-big-endian Big-endian
architectures are
Most Significant
byte First (MSF). For
example: SPARC,
m68k.

Specifies that the
most significant byte
of a short integer
(e.g. 0x00FF) is
stored at the first
byte (0x00) and the
less significant byte
(0xFF) at the second
byte.

mcpu polyspace-bug-finder-
server -target mcpu -big-
endian

-default-sign-of-char
[signed | unsigned]

Specify default sign
of char.

signed: Specifies
that char is signed,
overriding target’s
default.

unsigned: Specifies
that char is
unsigned, overriding
target’s default.

All targets polyspace-bug-finder-
server -default-sign-of-
char unsigned -target mcpu

-char-is-16bits char defined as 16
bits and all objects
have a minimum
alignment of 16 bits

Incompatible with -
short-is-8bits
and -align 8

mcpu polyspace-bug-finder-
server -target mcpu -char-
is-16bits

 Generic target options

2-47

Option Description Available
With

Example

-short-is-8bits Define short as 8
bits, regardless of
sign

mcpu polyspace-bug-finder-
server -target mcpu -
short-is-8bits

-int-is-32bits Define int as 32
bits, regardless of
sign. Alignment is
also set to 32 bits.

mcpu, hc08,
hc12,
mpc5xx

polyspace-bug-finder-
server -target mcpu -int-
is-32bits

-long-is-32bits Define long as 32
bits, regardless of
sign. Alignment is
also set to 32 bits.

If your project sets
int to 64 bits, you
cannot use this
option.

All targets polyspace-bug-finder-
server -target mcpu -long-
is-32bits

-long-long-is-64bits Define long long
as 64 bits,
regardless of sign.
Alignment is also set
to 64 bits.

mcpu polyspace-bug-finder-
server -target mcpu -long-
long-is-64bits

-double-is-64bits Define double and
long double as 64
bits, regardless of
sign.

mcpu,
sharc21x6
1, hc08,
hc12,
mpc5xx

polyspace-bug-finder-
server -target mcpu -
double-is-64bits

-pointer-is-24bits Define pointer as 24
bits, regardless of
sign.

c18 polyspace-bug-finder-
server -target c18 -
pointer-is-24bits

-pointer-is-32bits Define pointer as 32
bits, regardless of
sign.

mcpu polyspace-bug-finder-
server -target mcpu -
pointer-is-32bits

2 Option Descriptions

2-48

Option Description Available
With

Example

-align [32|16|8] Specifies the largest
alignment of struct
or array objects to
the 32, 16 or 8 bit
boundaries.

Consequently, the
array or struct
storage is strictly
determined by the
size of the individual
data objects without
member and end
padding.

mcpu, hc08,
hc12,
mpc5xx.

Other than
mcpu, all
targets
support only
16 or 32
bits.

polyspace-bug-finder-
server -target mcpu -align
16

See also:

• Management of wchar_t (-wchar-t-type-is)
• Management of size_t (-size-t-type-is)
• Enum type definition (-enum-type-definition)

You can also use the option -custom-target to specify sizes in bytes of fundamental
data types, signedness of plain char, alignment of structures and underlying types of
standard typedef-s such as size_t, wchar_t and ptrdiff_t.

Examples

Targets for GCC Based Compilers
If you select one of the gnu#.x compilers for Compiler (-compiler), you can specify
one of the supported target processor types. See Target processor type (-
target). If a target processor type is not directly listed as supported, you can create the
target by using this option.

For instance, you can create these targets:

 Generic target options

2-49

• Tricore: Use these options:

-target mcpu
-int-is-32bits
-long-long-is-64bits
-double-is-64bits
-pointer-is-32bits
-enum-type-definition auto-signed-first
-wchar-t-type-is signed-int

• PowerPC: Use these options:

-target mcpu
-int-is-32bits
-long-long-is-64bits
-double-is-64bits
-pointer-is-32bits
-wchar-t-type-is signed-int

• ARM: Use these options:

-target mcpu
-int-is-32bits
-long-long-is-64bits
-double-is-64bits
-pointer-is-32bits
-enum-type-definition auto-signed-first
-wchar-t-type-is unsigned-int

• MSP430: Use these options:

-target mcpu
-long-long-is-64bits
-double-is-64bits
-wchar-t-type-is signed-long
-align 16

See Also
Target processor type (-target)

Topics
“Prepare Scripts for Polyspace Analysis”
“Specify Target Environment and Compiler Behavior”

2 Option Descriptions

2-50

Sfr type support (-sfr-types)
Specify sizes of sfr types for code developed with Keil or IAR compilers

Description
Specify sizes of sfr types (types that define special function registers).

Set Option
User interface (desktop products only): In your project configuration, the option is on
the Target & Compiler node. See “Dependency” on page 2-51 for other options you
must also enable.

Command line: Use the option -sfr-types. See “Command-Line Information” on page
2-52.

Why Use This Option
Use this option if you have statements such as sfr addr = 0x80; in your code. sfr
types are not standard C types. Therefore, you must specify their sizes explicitly for the
Polyspace analysis.

Settings
No Default

List each sfr name and its size in bits.

Dependency
This option is available only when Compiler (-compiler) is set to keil or iar.

 Sfr type support (-sfr-types)

2-51

Command-Line Information
Syntax: -sfr-types sfr_name=size_in_bits,...
No Default
Name Value: an sfr name such as sfr16.
Size Value: 8 | 16 | 32
Example (Bug Finder): polyspace-bug-finder -lang c -compiler iar -sfr-
types sfr=8,sfr16=16 ...
Example (Code Prover): polyspace-code-prover -lang c -compiler iar -
sfr-types sfr=8,sfr16=16 ...
Example (Bug Finder Server): polyspace-bug-finder-server -lang c -
compiler iar -sfr-types sfr=8,sfr16=16 ...
Example (Code Prover Server): polyspace-code-prover-server -lang c -
compiler iar -sfr-types sfr=8,sfr16=16 ...

See Also

Topics
“Prepare Scripts for Polyspace Analysis”
“Specify Target Environment and Compiler Behavior”
“Supported Keil or IAR Language Extensions”

2 Option Descriptions

2-52

Division round down (-div-round-down)
Round down quotients from division or modulus of negative numbers instead of rounding
up

Description
Specify whether quotients from division and modulus of negative numbers are rounded up
or down.

Note a = (a / b) * b + a % b is always true.

Set Option
User interface (desktop products only): In your project configuration, the option is on
the Target & Compiler node.

Command line: Use the option -div-round-down. See “Command-Line Information” on
page 2-54.

Why Use This Option
Use this option to emulate your compiler.

The option is relevant only for compilers following C90 standard (ISO/IEC 9899:1990).
The standard stipulates that "if either operand of / or % is negative, whether the result of
the / operator, is the largest integer less or equal than the algebraic quotient or the
smallest integer greater or equal than the quotient, is implementation defined, same for
the sign of the % operator". The standard allows compilers to choose their own
implementation.

For compilers following the C99 standard ((ISO/IEC 9899:1999), this option is not
required. The standard enforces division with rounding towards zero (section 6.5.5).

 Division round down (-div-round-down)

2-53

Settings
 On

If either operand / or % is negative, the result of the / operator is the largest integer
less than or equal to the algebraic quotient. The result of the % operator is deduced
from a % b = a - (a / b) * b.

Example: assert(-5/3 == -2 && -5%3 == 1); is true.
 Off (default)

If either operand of / or % is negative, the result of the / operator is the smallest
integer greater than or equal to the algebraic quotient. The result of the % operator is
deduced from a % b = a - (a / b) * b.

This behavior is also known as rounding towards zero.

Example: assert(-5/3 == -1 && -5%3 == -2); is true.

Command-Line Information
Parameter: -div-round-down
Default: Off
Example (Bug Finder): polyspace-bug-finder -div-round-down
Example (Code Prover): polyspace-code-prover -div-round-down
Example (Bug Finder Server): polyspace-bug-finder-server -div-round-down
Example (Code Prover Server): polyspace-code-prover-server -div-round-
down

See Also

Topics
“Prepare Scripts for Polyspace Analysis”
“Specify Target Environment and Compiler Behavior”

2 Option Descriptions

2-54

Enum type definition (-enum-type-
definition)
Specify how to represent an enum with a base type

Description
Allow the analysis to use different base types to represent an enumerated type, depending
on the enumerator values and the selected definition. When using this option, each enum
type is represented by the smallest integral type that can hold its enumeration values.

This option is available on the Target & Compiler node in the Configuration pane.

Set Option
User interface (desktop products only): In your project configuration, the option is on
the Target & Compiler node.

Command line: Use the option -enum-type-definition. See “Command-Line
Information” on page 2-57.

Why Use This Option
Your compiler represents enum variables as constants of a base integer type. Use this
option so that you can emulate your compiler.

To check your compiler settings, compile this code using the compiler settings that you
typically use:

#include <assert.h>
#include <limits.h>

enum { MAXSIGNEDBYTE=127 } mysmallenum_t;
int dummy[(int)sizeof(mysmallenum_t) - (int)sizeof(int)]; /* Breakpoint 1 */

enum { MYMAXINT = INT_MAX } myintenum_t;
int main(void) {

 Enum type definition (-enum-type-definition)

2-55

 assert((MYMAXINT + 1) < 0); /* Breakpoint 2 */
 assert((MYMAXINT + 1) >= 0); /* Breakpoint 3 */
 assert(0); /* Breakpoint 4 */

 return 0;
}

If compilation does not fail even at breakpoint 4, your assert statements do not behave
as expected. Check your compiler documentation and change your compiler settings. If
compilation fails at:

• Breakpoint 1: Use defined-by-compiler for this option.
• Breakpoint 2: Use auto-signed-first for this option.
• Breakpoint 3: Use auto-unsigned-first for this option.

Settings
Default: defined-by-compiler

defined-by-compiler
Uses the signed integer type for all compilers except gnu, clang and tasking.

For the gnu and clang compilers, it uses the first type that can hold all of the
enumerator values from this list: signed int, unsigned int, signed long,
unsigned long, signed long long, and unsigned long long.

For the tasking compiler, it uses the first type that can hold all of the enumerator
values from this list: char, unsigned char, short, unsigned short, int, and
unsigned int.

auto-signed-first
Uses the first type that can hold all of the enumerator values from this list: signed
char, unsigned char, signed short, unsigned short, signed int, unsigned
int, signed long, unsigned long, signed long long, and unsigned long
long.

auto-unsigned-first
Uses the first type that can hold all of the enumerator values from these lists:

2 Option Descriptions

2-56

• If enumerator values are positive: unsigned char, unsigned short, unsigned
int, unsigned long, and unsigned long long.

• If one or more enumerator values are negative: signed char, signed short,
signed int, signed long, and signed long long.

Command-Line Information
Parameter: -enum-type-definition
Value: defined-by-compiler | auto-signed-first | auto-unsigned-first
Default: defined-by-compiler
Example (Bug Finder): polyspace-bug-finder -enum-type-definition auto-
signed-first
Example (Code Prover): polyspace-code-prover -enum-type-definition
auto-signed-first
Example (Bug Finder Server): polyspace-bug-finder-server -enum-type-
definition auto-signed-first
Example (Code Prover Server): polyspace-code-prover-server -enum-type-
definition auto-signed-first

See Also

Topics
“Prepare Scripts for Polyspace Analysis”
“Specify Target Environment and Compiler Behavior”

 Enum type definition (-enum-type-definition)

2-57

Signed right shift (-logical-signed-right-
shift)
Specify how to treat the sign bit for logical right shifts on signed variables

Description
Choose between arithmetic and logical shift for right shift operations on negative values.

This option does not modify compile-time expressions. For more details, see “Limitation”
on page 2-59.

Set Option
User interface (desktop products only): In your project configuration, the option is on
the Target & Compiler node.

Command line: Use the option -logical-signed-right-shift. See “Command-Line
Information” on page 2-59.

Why Use This Option
The C99 Standard (sec 6.5.7) states that for a right-shift operation x1>>x2, if x1 is signed
and has negative values, the behavior is implementation-defined. Different compilers
choose between arithmetic and logical shift. Use this option to emulate your compiler.

Settings
Default: Arithmetical

Arithmetical
The sign bit remains:

(-4) >> 1 = -2
(-7) >> 1 = -4
 7 >> 1 = 3

2 Option Descriptions

2-58

Logical
0 replaces the sign bit:

(-4) >> 1 = (-4U) >> 1 = 2147483646
(-7) >> 1 = (-7U) >> 1 = 2147483644
 7 >> 1 = 3

Limitation
In compile-time expressions, this Polyspace option does not change the standard behavior
for right shifts.

For example, consider this right shift expression:

int arr[((-4) >> 20)];

The compiler computes array sizes, so the expression (-4) >> 20 is evaluated at
compilation time. Logically, this expression is equivalent to 4095. However, arithmetically,
the result is -1. This statement causes a compilation error (arrays cannot have negative
size) because the standard right-shift behavior for signed integers is arithmetic.

Command-Line Information
When using the command line, arithmetic is the default computation mode. When this
option is set, logical computation is performed.
Parameter: -logical-signed-right-shift
Default: Arithmetic signed right shifts
Example (Bug Finder): polyspace-bug-finder -logical-signed-right-shift
Example (Code Prover): polyspace-code-prover -logical-signed-right-
shift
Example (Bug Finder Server): polyspace-bug-finder-server -logical-
signed-right-shift
Example (Code Prover Server): polyspace-code-prover-server -logical-
signed-right-shift

 Signed right shift (-logical-signed-right-shift)

2-59

See Also

Topics
“Prepare Scripts for Polyspace Analysis”
“Specify Target Environment and Compiler Behavior”

2 Option Descriptions

2-60

Block char16/32_t types (-no-uliterals)
Disable Polyspace definitions for char16_t or char32_t

Description
Specify that the analysis must not define char16_t or char32_t types.

Set Option
User interface (desktop products only): In your project configuration, the option is on
the Target & Compiler node. See “Dependencies” on page 2-62 for other options you
must also enable.

Command line: Use the option -no-uliterals. See “Command-Line Information” on
page 2-62.

Why Use This Option
If your compiler defines char16_t and/or char32_t through a typedef statement or by
using includes, use this option to turn off the standard Polyspace definition of char16_t
and char32_t.

To check if your compiler defines these types, compile this code using the compiler
settings that you typically use:

typedef unsigned short char16_t;
typedef unsigned long char32_t;

If the file compiles, it means that your compiler has already defined char16_t and
char32_t. Enable this Polyspace option.

Settings
 On

The analysis does not allow char16_t and char32_t types.

 Block char16/32_t types (-no-uliterals)

2-61

 Off (default)
The analysis allows char16_t and char32_t types.

Dependencies
You can select this option only when these conditions are true:

• Source code language (-lang) is set to CPP or C-CPP.
• Compiler (-compiler) is set to generic or a gnu version.

Command-Line Information
Parameter: -no-uliterals
Default: off
Example (Bug Finder): polyspace-bug-finder -lang cpp -compiler gnu4.7 -
cpp-version cpp11 -no-uliterals
Example (Code Prover): polyspace-code-prover -compiler gnu4.7 -lang cpp
-cpp-version cpp11 -no-uliterals
Example (Bug Finder Server): polyspace-bug-finder-server -lang cpp -
compiler gnu4.7 -cpp-version cpp11 -no-uliterals
Example (Code Prover Server): polyspace-code-prover-server -compiler
gnu4.7 -lang cpp -cpp-version cpp11 -no-uliterals

See Also
Compiler (-compiler)

Topics
“Prepare Scripts for Polyspace Analysis”
“Specify Target Environment and Compiler Behavior”

2 Option Descriptions

2-62

Pack alignment value (-pack-alignment-
value)
Specify default structure packing alignment for code developed in Visual C++

Description
Specify the default packing alignment (in bytes) for structures, unions, and class
members.

Set Option
User interface (desktop products only): In your project configuration, the option is on
the Target & Compiler node.

Command line: Use the option -pack-alignment-value. See “Command-Line
Information” on page 2-64.

Why Use This Option
If you use compiler options to specify how members of a structure are packed into
memory, use this option to emulate your compiler.

For instance, if you use the Visual Studio option /Zp to specify an alignment, use this
option for your Polyspace analysis.

If you use #pragma pack directives in your code to specify alignment, and also specify
this option for analysis, the #pragma pack directives take precedence.

Settings
Default: 8

You can enter one of these values:

 Pack alignment value (-pack-alignment-value)

2-63

https://msdn.microsoft.com/en-us/library/xh3e3fd0.aspx

• 1
• 2
• 4
• 8
• 16

Command-Line Information
Parameter: -pack-alignment-value
Value: 1 | 2 | 4 | 8 | 16
Default: 8
Example (Bug Finder): polyspace-bug-finder -compiler visual10 -pack-
alignment-value 4
Example (Code Prover): polyspace-code-prover -compiler visual10 -pack-
alignment-value 4
Example (Bug Finder Server): polyspace-bug-finder-server -compiler
visual10 -pack-alignment-value 4
Example (Code Prover Server): polyspace-code-prover-server -compiler
visual10 -pack-alignment-value 4

See Also

2 Option Descriptions

2-64

Ignore pragma pack directives (-ignore-
pragma-pack)
Ignore #pragma pack directives

Description
Specify that the analysis must ignore #pragma pack directives in the code.

Set Option
User interface (desktop products only): In your project configuration, the option is on
the Target & Compiler node.

Command line: Use the option -ignore-pragma-pack. See “Command-Line
Information” on page 2-66.

Why Use This Option
Use this option if #pragma pack directives in your code cause linking errors.

For instance, you have two structures with the same name in your code, but one
declaration follows a #pragma pack(2) statement. Because the default alignment is 8
bytes, the different packing for the two structures causes a linking error. Use this option
to avoid such errors.

Settings
 On

The analysis ignores the #pragma directives.

 Off (default)
The analysis takes into account specifications in the #pragma directives.

 Ignore pragma pack directives (-ignore-pragma-pack)

2-65

Command-Line Information
Parameter: -ignore-pragma-pack
Default: Off
Example (Bug Finder): polyspace-bug-finder -ignore-pragma-pack
Example (Code Prover): polyspace-code-prover -ignore-pragma-pack
Example (Bug Finder Server): polyspace-bug-finder-server -ignore-pragma-
pack
Example (Code Prover Server): polyspace-code-prover-server -ignore-
pragma-pack

See Also

2 Option Descriptions

2-66

Management of size_t (-size-t-type-is)
Specify the underlying data type of size_t

Description
Specify the underlying data type of size_t explicitly: unsigned int, unsigned long
or unsigned long long. If you do not specify this option, your choice of compiler
determines the underlying type.

Set Option
User interface (desktop products only): In your project configuration, the option is on
the Target & Compiler node.

Command line: Use the option -size-t-type-is. See “Command-Line Information” on
page 2-68.

Why Use This Option
The analysis associates a data type with size_t when you specify your compiler. If you
use a compiler option that changes this default type, emulate your compiler option by
using this analysis option.

If you run into compilation errors during Polyspace analysis and trace the error to the
definition of size_t, it is possible that you use a compiler option and change your
compiler default. To probe further, compile this code with your compiler using the options
that you typically use:

/* Header defines malloc as void* malloc (size_t size)
#include <stdio.h>

void* malloc (unsigned int size);

If the file does not compile, your compiler options cause size_t to be defined as
unsigned long or unsigned long long. Replace unsigned int with unsigned
long and try again.

 Management of size_t (-size-t-type-is)

2-67

Settings
Default: defined-by-compiler

defined-by-compiler
Your specification for Compiler (-compiler) determines the underlying type of
size_t.

unsigned-int
The analysis considers unsigned int as the underlying type of size_t.

unsigned-long
The analysis considers unsigned long as the underlying type of size_t.

unsigned-long-long
The analysis considers unsigned long long as the underlying type of size_t.

Command-Line Information
Parameter: -size-t-type-is
Value: defined-by-compiler | unsigned-int | unsigned-long | unsigned-long-
long
Default: defined-by-compiler
Example (Bug Finder): polyspace-bug-finder -size-t-type-is unsigned-
long
Example (Code Prover): polyspace-code-prover -size-t-type-is unsigned-
long
Example (Bug Finder Server): polyspace-bug-finder-server -size-t-type-is
unsigned-long
Example (Code Prover Server): polyspace-code-prover-server -size-t-type-
is unsigned-long

See Also
-custom-target

Topics
“Prepare Scripts for Polyspace Analysis”
“Specify Target Environment and Compiler Behavior”

2 Option Descriptions

2-68

Management of wchar_t (-wchar-t-type-is)
Specify the underlying data type of wchar_t

Description
Specify the underlying data type of wchar_t explicitly. If you do not specify this option,
your choice of compiler determines the underlying type.

Set Option
User interface (desktop products only): In your project configuration, the option is on
the Target & Compiler node.

Command line: Use the option -wchar-t-type-is. See “Command-Line Information”
on page 2-70.

Why Use This Option
The analysis associates a data type with wchar_t when you specify your compiler. If you
use a compiler option that changes this default type, emulate your compiler option by
using this analysis option.

Settings
Default: defined-by-compiler

defined-by-compiler
Your specification for Compiler (-compiler) determines the underlying type of
wchar_t.

signed-short
The analysis considers signed short as the underlying type of wchar_t.

unsigned-short
The analysis considers unsigned short as the underlying type of wchar_t.

 Management of wchar_t (-wchar-t-type-is)

2-69

signed-int
The analysis considers signed int as the underlying type of wchar_t.

unsigned-int
The analysis considers unsigned int as the underlying type of wchar_t.

signed-long
The analysis considers signed long as the underlying type of wchar_t.

unsigned-long
The analysis considers unsigned long as the underlying type of wchar_t.

Command-Line Information
Parameter: -wchar-t-type-is
Value: defined-by-compiler | signed-short | unsigned-short | signed-
int | unsigned-int | signed-long | unsigned-long
Default: defined-by-compiler
Example (Bug Finder): polyspace-bug-finder -wchar-t-type-is signed-int
Example (Code Prover): polyspace-code-prover -wchar-t-type-is signed-
int
Example (Bug Finder Server): polyspace-bug-finder-server -wchar-t-type-
is signed-int
Example (Code Prover Server): polyspace-code-prover-server -wchar-t-
type-is signed-int

See Also

Topics
“Prepare Scripts for Polyspace Analysis”
“Specify Target Environment and Compiler Behavior”

2 Option Descriptions

2-70

Ignore link errors (-no-extern-c)
Ignore certain linking errors

Description
Specify that the analysis must ignore certain linking errors.

Set Option
User interface (desktop products only): In your project configuration, the option is on
the Environment Settings node. See “Dependency” on page 2-72 for other options that
you must also enable.

Command line: Use the option -no-extern-C. See “Command-Line Information” on
page 2-72.

Why Use This Option
Some functions may be declared inside an extern "C" { } block in some files and not
in others. Then, their linkage is not the same and it causes a link error according to the
ANSI standard.

Applying this option will cause Polyspace to ignore this error. This permissive option may
not resolve all the extern C linkage errors.

Settings
 On

Ignore linking errors if possible.

 Off (default)
Stop analysis for linkage errors.

 Ignore link errors (-no-extern-c)

2-71

Dependency
This option is available only if you set Source code language (-lang) to CPP or C-
CPP.

Command-Line Information
Parameter: -no-extern-C
Default: off
Example (Bug Finder): polyspace-bug-finder -lang cpp -no-extern-C
Example (Code Prover): polyspace-code-prover -lang cpp -no-extern-C
Example (Bug Finder Server): polyspace-bug-finder-server -lang cpp -no-
extern-C
Example (Code Prover Server): polyspace-code-prover-server -lang cpp -
no-extern-C

See Also

Topics
“Prepare Scripts for Polyspace Analysis”

2 Option Descriptions

2-72

Preprocessor definitions (-D)
Replace macros in preprocessed code

Description
Replace macros with their definitions in preprocessed code.

Set Option
User interface (desktop products only): In your project configuration, the option is on
the Macros node.

Command line: Use the option -D. See “Command-Line Information” on page 2-75.

Why Use This Option
Use this option to emulate your compiler behavior. For instance, if your compiler
considers a macro _WIN32 as defined when you build your code, it executes code in a
#ifdef _WIN32 statement. If Polyspace does not consider that macro as defined, you
must use this option to replace the macro with 1.

Depending on your settings for Compiler (-compiler), some macros are defined by
default. Use this option to define macros that are not implicitly defined.

Typically, you recognize from compilation errors that a certain macro is not defined. For
instance, the following code does not compile if the macro _WIN32 is not defined.

#ifdef _WIN32
 int env_var;
#endif

void set() {
 env_var=1;
}

The error message states that env_var is undefined. However, the definition of env_var
is in the #ifdef _WIN32 statement. The underlying cause for the error is that the macro
_WIN32 is not defined. You must define _WIN32.

 Preprocessor definitions (-D)

2-73

Settings
No Default

Using the button, add a row for the macro you want to define. The definition must be
in the format Macro=Value. If you want Polyspace to ignore the macro, leave the Value
blank.

For example:

• name1=name2 replaces all instances of name1 by name2.
• name= instructs the software to ignore name.
• name with no equals sign or value replaces all instances of name by 1. To define a

macro to execute code in a #ifdef macro_name statement, use this syntax.

Tips
• If Polyspace does not support a non-ANSI keyword and shows a compilation error, use

this option to replace all occurrences of the keyword with a blank string in
preprocessed code. The replacement occurs only for the purposes of the analysis. Your
original source code remains intact.

For instance, if your compiler supports the __far keyword, to avoid compilation
errors:

• In the user interface (desktop products only), enter __far=.
• On the command line, use the flag -D __far=.

The software replaces the __far keyword with a blank string during preprocessing.
For example:

int __far* pValue;

is converted to:

int * pValue;
• Polyspace recognizes keywords such as restrict and does not allow their use as
identifiers. If you use those keywords as identifiers (because your compiler does not
recognize them as keywords), replace the disallowed name with another name using

2 Option Descriptions

2-74

this option. The replacement occurs only for the purposes of the analysis. Your original
source code remains intact.

For instance, to allow use of restrict as identifier:

• In the user interface, enter restrict=my_restrict.
• On the command line, use the flag -D restrict=my_restrict.

Command-Line Information
You can specify only one flag with each -D option. However, you can specify the option
multiple times.
Parameter: -D
No Default
Value: flag=value
Example (Bug Finder): polyspace-bug-finder -D HAVE_MYLIB -D int32_t=int
Example (Code Prover): polyspace-code-prover -D HAVE_MYLIB -D
int32_t=int
Example (Bug Finder Server): polyspace-bug-finder-server -D HAVE_MYLIB -
D int32_t=int
Example (Code Prover Server): polyspace-code-prover-server -D HAVE_MYLIB
-D int32_t=int

See Also
Disabled preprocessor definitions (-U)

Topics
“Prepare Scripts for Polyspace Analysis”

 Preprocessor definitions (-D)

2-75

Disabled preprocessor definitions (-U)
Undefine macros in preprocessed code

Description
Undefine macros in preprocessed code.

Set Option
User interface (desktop products only): In your project configuration, the option is on
the Macros node.

Command line: Use the option -U. See “Command-Line Information” on page 2-77.

Why Use This Option
Use this option to emulate your compiler behavior. For instance, if your compiler
considers a macro _WIN32 as undefined when you build your code, it executes code in a
#ifndef _WIN32 statement. If Polyspace considers that macro as defined, you must
explicitly undefine the macro.

Some settings for Compiler (-compiler) enable certain macros by default. This option
allows you undefine the macros.

Typically, you recognize from compilation errors that a certain macro must be undefined.
For instance, the following code does not compile if the macro _WIN32 is defined.

#ifndef _WIN32
 int env_var;
#endif

void set() {
 env_var=1;
}

The error message states that env_var is undefined. However, the definition of env_var
is in the #ifndef _WIN32 statement. The underlying cause for the error is that the
macro _WIN32 is defined. You must undefine _WIN32.

2 Option Descriptions

2-76

Settings
No Default

Using the button, add a new row for each macro being undefined.

Command-Line Information
You can specify only one flag with each -U option. However, you can specify the option
multiple times.
Parameter: -U
No Default
Value: macro
Example (Bug Finder): polyspace-bug-finder -U HAVE_MYLIB -U USE_COM1
Example (Code Prover): polyspace-code-prover -U HAVE_MYLIB -U USE_COM1
Example (Bug Finder Server): polyspace-bug-finder-server -U HAVE_MYLIB -
U USE_COM1
Example (Code Prover Server): polyspace-code-prover-server -U HAVE_MYLIB
-U USE_COM1

See Also
Preprocessor definitions (-D)

Topics
“Prepare Scripts for Polyspace Analysis”

 Disabled preprocessor definitions (-U)

2-77

Code from DOS or Windows file system (-
dos)
Consider that file paths are in MS-DOS style

Description
Specify that DOS or Windows files are provided for analysis.

Set Option
User interface (desktop products only): In your project configuration, the option is on
the Environment Settings node.

Command line: Use the option -dos. See “Command-Line Information” on page 2-79.

Why Use This Option
Use this option if the contents of the Include or Source folder come from a DOS or
Windows file system. The option helps you resolve case sensitivity and control character
issues.

Settings
 On (default)

Analysis understands file names and include paths for Windows/DOS files

For example, with this option,

#include "..\mY_TEst.h"^M

#include "..\mY_other_FILE.H"^M

resolves to:

2 Option Descriptions

2-78

#include "../my_test.h"

#include "../my_other_file.h"

In this mode, you see an error if your include folder has header files whose names
differ only in case.

 Off
Characters are not controlled for files names or paths.

Command-Line Information
Parameter: -dos
Default: Off
Example (Bug Finder): polyspace-bug-finder -dos -I ./
my_copied_include_dir -D test=1
Example (Code Prover): polyspace-code-prover -dos -I ./
my_copied_include_dir -D test=1
Example (Bug Finder Server): polyspace-bug-finder-server -dos -I ./
my_copied_include_dir -D test=1
Example (Code Prover Server): polyspace-code-prover-server -dos -I ./
my_copied_include_dir -D test=1

See Also

Topics
“Prepare Scripts for Polyspace Analysis”

 Code from DOS or Windows file system (-dos)

2-79

Stop analysis if a file does not compile (-
stop-if-compile-error)
Specify that a compilation error must stop the analysis

Description
Specify that even a single compilation error must stop the analysis.

Set Option
User interface (desktop products only): In the Configuration pane, the option is on the
Environment Settings node.

Command line: Use the option -stop-if-compile-error. See “Command-Line
Information” on page 2-82.

Why Use This Option
Use this option to first resolve all compilation errors and then perform the Polyspace
analysis. This sequence ensures that all files are analyzed.

Otherwise, only files without compilation errors are fully analyzed. The analysis might
return some results for files that do not compile. If a file with compilation errors contains
a function definition, the analysis considers the function undefined. This assumption can
sometimes make the analysis less precise.

The option is more useful for a Code Prover analysis because the Code Prover run-time
checks rely more heavily on range propagation across functions.

Settings
 On

The analysis stops even if a single compilation error occurs.

2 Option Descriptions

2-80

In the user interface of the Polyspace desktop products, you see the compilation
errors on the Output Summary pane.

For information on how to resolve the errors, see “Troubleshoot Compilation Errors”.

You can also see the errors in the analysis log, a text file generated during the
analysis. The log is named Polyspace_R20##n_ProjectName_date-time.log and
contains lines starting with Error: indicating compilation errors. To view the log
from the analysis results:

• In the user interface of the Polyspace desktop products, select Window > Show/
Hide View > Run Log.

• In the Polyspace Access web interface, open the Review tab. Select Layout >
Show/Hide View > Run Log.

Despite compilation errors, you can see some analysis results, for instance, coding
rule violations.

 Off (default)
The analysis does not stop because of compilation errors, but only files without
compilation errors are analyzed. The analysis does not consider files that do not
compile. If a file with compilation errors contains a function definition, the analysis
considers the function undefined. If the analysis needs the definition of such a
function, it makes broad assumptions about the function.

• The function return value can take any value in the range allowed by its data type.
• The function can modify arguments passed by reference so that they can take any

value in the range allowed by their data types.

If the assumptions are too broad, the analysis can be less precise. For instance, a run-
time check can flag an operation in orange even though it does not fail in practice.

 Stop analysis if a file does not compile (-stop-if-compile-error)

2-81

If compilation errors occur, in the user interface of the Polyspace desktop products,
the Dashboard pane has a link, which shows that some files failed to compile. You
can click the link and see the compilation errors on the Output Summary pane.

You can also see the errors in the analysis log, a text file generated during the
analysis. The log is named Polyspace_R20##n_ProjectName_date-time.log and
contains lines starting with Error: indicating compilation errors. To view the log
from the analysis results:

• In the user interface of the Polyspace desktop products, select Window > Show/
Hide View > Run Log.

• In the Polyspace Access web interface, open the Review tab. Select Layout >
Show/Hide View > Run Log.

Command-Line Information
Parameter:-stop-if-compile-error
Default: Off
Example (Bug Finder): polyspace-bug-finder -sources filename -stop-if-
compile-error
Example (Code Prover): polyspace-code-prover -sources filename -stop-
if-compile-error
Example (Bug Finder Server): polyspace-bug-finder-server -sources
filename -stop-if-compile-error
Example (Code Prover Server): polyspace-code-prover-server -sources
filename -stop-if-compile-error

See Also

Topics
“Prepare Scripts for Polyspace Analysis”

Introduced in R2017a

2 Option Descriptions

2-82

Command/script to apply to preprocessed
files (-post-preprocessing-command)
Specify command or script to run on source files after preprocessing phase of analysis

Description
Specify a command or script to run on each source file after preprocessing.

Set Option
User interface (desktop products only): In your project configuration, the option is on
the Environment Settings node.

Command line: Use the option -post-preprocessing-command. See “Command-Line
Information” on page 2-85.

Why Use This Option
You can run scripts on preprocessed files to work around compilation errors or
imprecisions of the analysis while keeping your original source files untouched. For
instance, suppose Polyspace does not recognize a compiler-specific keyword. If you are
certain that the keyword is not relevant for the analysis, you can run a Perl script to
remove all instances of the keyword. When you use this option, the software removes the
keyword from your preprocessed code but keeps your original code untouched.

Use a script only if the existing analysis options do not meet your requirements. For
instance:

• For direct replacement of one keyword with another, use the option Preprocessor
definitions (-D).

However, the option does not allow search and replacement involving regular
expressions. For regular expressions, use a script.

• For mapping your library function to a standard library function, use the option -
function-behavior-specifications.

 Command/script to apply to preprocessed files (-post-preprocessing-command)

2-83

However, the option supports mapping to only a subset of standard library functions.
To map to an unsupported function, use a script.

If you are unsure about removing or replacing an unsupported construct, do not use this
option. Contact MathWorks Support for guidance.

Settings
No Default

Enter full path to the command or script or click to navigate to the location of the
command or script. This script is executed before verification.

Tips
• Your script must be designed to process the standard output from preprocessing and

produce its results in accordance with that standard output.
• Your script must preserve the number of lines in the preprocessed file. In other words,

it must not add or remove entire lines to or from the file.

Adding a line or removing one can potentially result in some unpredictable behavior
on the location of checks and macros in the Polyspace user interface.

• For a Perl script, in Windows, specify the full path to the Perl executable followed by
the full path to the script.

For example:

• To specify a Perl command that replaces all instances of the far keyword, enter
polyspaceroot\sys\perl\win32\bin\perl.exe -p -e "s/far//g".

• To specify a Perl script replace_keyword.pl that replaces all instances of a
keyword, enter polyspaceroot\sys\perl\win32\bin\perl.exe
absolute_path\replace_keyword.pl.

Here, polyspaceroot is the location of the current Polyspace installation such as
C:\Program Files\Polyspace\R2019a\ and absolute_path is the location of
the Perl script. If the paths contain spaces, use quotes to enclose the full path names.

2 Option Descriptions

2-84

• Use this Perl script as template. The script removes all instances of the far keyword.

#!/usr/bin/perl

binmode STDOUT;

Process every line from STDIN until EOF
while ($line = <STDIN>)
{

 # Remove far keyword
 $line =~ s/far//g;

 # Print the current processed line to STDOUT
 print $line;
}

You can use Perl regular expressions to perform substitutions. For instance, you can
use the following expressions.

Expression Meaning
. Matches any single character except newline
[a-z0-9] Matches any single letter in the set a-z, or digit in the set

0-9
[^a-e] Matches any single letter not in the set a-e
\d Matches any single digit
\w Matches any single alphanumeric character or _
x? Matches 0 or 1 occurrence of x
x* Matches 0 or more occurrences of x
x+ Matches 1 or more occurrences of x

For complete list of regular expressions, see Perl documentation.
• When you specify this option, the Compilation Assistant is automatically disabled.

Command-Line Information
Parameter: -post-preprocessing-command
Value: Path to executable file or command in quotes

 Command/script to apply to preprocessed files (-post-preprocessing-command)

2-85

https://perldoc.perl.org/perlre.html#Regular-Expressions

No Default
Example in Linux® (Bug Finder): polyspace-bug-finder -sources file_name
-post-preprocessing-command `pwd`/replace_keyword.pl
Example in Linux (Code Prover): polyspace-code-prover -sources file_name
-post-preprocessing-command `pwd`/replace_keyword.pl
Example in Linux (Bug Finder Server): polyspace-bug-finder-server -
sources file_name -post-preprocessing-command `pwd`/
replace_keyword.pl
Example in Linux (Code Prover Server): polyspace-code-prover-server -
sources file_name -post-preprocessing-command `pwd`/
replace_keyword.pl
Example in Windows: polyspace-bug-finder -sources file_name -post-
preprocessing-command "C:\Program Files\MATLAB\R2015b\sys\perl
\win32\bin\perl.exe" "C:\My_Scripts\replace_keyword.pl"

Note that in Windows, you use the full path to the Perl executable.

See Also
-regex-replace-rgx -regex-replace-fmt | Command/script to apply after
the end of the code verification (-post-analysis-command)

Topics
“Prepare Scripts for Polyspace Analysis”
“Remove or Replace Keywords Before Compilation”

2 Option Descriptions

2-86

Include (-include)
Specify files to be #include-ed by each C file in analysis

Description
Specify files to be #include-ed by each C file involved in the analysis. The software
enters the #include statements in the preprocessed code used for analysis, but does not
modify the original source code.

Set Option
User interface (desktop products only): In your project configuration, the option is on
the Environment Settings node.

Command line: Use the option -include. See “Command-Line Information” on page 2-
88.

Why Use This Option
There can be many reasons why you want to #include a file in all your source files.

For instance, you can collect in one header file all workarounds for compilation errors.
Use this option to provide the header file for analysis. Suppose you have compilation
issues because Polyspace does not recognize certain compiler-specific keywords. To work
around the issues, #define the keywords in a header file and provide the header file with
this option.

Settings
No Default

Specify the file name to be included in every file involved in the analysis.

Polyspace still acts on other directives such as #include <include_file.h>.

 Include (-include)

2-87

Command-Line Information
Parameter: -include
Default: None
Value: file (Use -include multiple times for multiple files)
Example (Bug Finder): polyspace-bug-finder -include `pwd`/sources/
a_file.h -include /inc/inc_file.h
Example (Code Prover): polyspace-code-prover -include `pwd`/sources/
a_file.h -include /inc/inc_file.h
Example (Bug Finder Server): polyspace-bug-finder-server -include `pwd`/
sources/a_file.h -include /inc/inc_file.h
Example (Code Prover Server): polyspace-code-prover-server -include
`pwd`/sources/a_file.h -include /inc/inc_file.h

See Also

Topics
“Prepare Scripts for Polyspace Analysis”
“Gather Compilation Options Efficiently”

2 Option Descriptions

2-88

Include folders (-I)
View include folders used for analysis

Description
This option is relevant only for the user interface of the Polyspace desktop products.

View the include folders used for analysis.

Set Option
This is not an option that you set in your project configuration. You can only view the
include folders in the configuration associated with a result. For instance, in the user
interface:

• To add include folders, on the Project Browser, right-click your project. Select Add
Source.

• To view the include folders that you used, with your results open, select Window >
Show/Hide View > Configuration. Under the node Environment Settings, you see
the folders listed under Include folders.

Settings
This is a read-only option available only when viewing results in the user interface of the
Polyspace desktop products. Unlike other options, you do not specify include folders on
the Configuration pane. Instead, you add your include folders on the Project Browser
pane.

See Also
-I | Include (-include)

 Include folders (-I)

2-89

Constraint setup (-data-range-
specifications)
Constrain global variables, function inputs and return values of stubbed functions

Description
This option applies primarily to a Code Prover analysis. In Bug Finder, you can only
specify external constraints on global variables.

Specify constraints (also known as data range specifications or DRS) for global variables,
function inputs and return values of stubbed functions using a Constraint Specification
template file. The template file is an XML file that you can generate in the Polyspace user
interface.

Set Option
User interface (desktop products only): In your project configuration, the option is on
the Inputs & Stubbing node.

Command line: Use the option -data-range-specifications. See “Command-Line
Information” on page 2-91.

Why Use This Option
Use this option for specifying constraints outside your code.

Polyspace uses the code that you provide to make assumptions about items such as
variable ranges and allowed buffer size for pointers. Sometimes the assumptions are
broader than what you expect because:

• You have not provided the complete code. For example, you did not provide some of
the function definitions.

• Some of the information about variables is available only at run time. For example,
some variables in your code obtain values from the user at run time.

Because of these broad assumptions:

2 Option Descriptions

2-90

• Code Prover can consider more execution paths than those paths that occur at run
time. If an operation fails along one of the execution paths, Polyspace places an orange
check on the operation. If that execution path does not occur at run time, the orange
check indicates a false positive.

• Bug Finder can sometimes produce false positives.

To reduce the number of such false positives, you can specify additional constraints on
global variables, function inputs, and return values of stubbed functions.

After you specify your constraints, you can save them as an XML file to use them for
subsequent analyses. If your source code changes, you can update the previous
constraints. You do not have to create a new constraint template.

Settings
No Default

Enter full path to the template file. Alternately, click to open a Constraint
Specification wizard. This wizard allows you to generate a template file or navigate to an
existing template file.

For more information, see “Specify External Constraints”.

Command-Line Information
Parameter: -data-range-specifications
Value: file
No Default
Example (Bug Finder): polyspace-bug-finder -sources file_name -data-
range-specifications "C:\DRS\range.xml"
Example (Code Prover): polyspace-code-prover -sources file_name -data-
range-specifications "C:\DRS\range.xml"
Example (Bug Finder Server): polyspace-bug-finder-server -sources
file_name -data-range-specifications "C:\DRS\range.xml"
Example (Code Prover Server): polyspace-code-prover-server -sources
file_name -data-range-specifications "C:\DRS\range.xml"

 Constraint setup (-data-range-specifications)

2-91

See Also
Functions to stub (-functions-to-stub) | Ignore default initialization
of global variables (-no-def-init-glob)

Topics
“Prepare Scripts for Polyspace Analysis”
“Specify External Constraints”

2 Option Descriptions

2-92

Ignore default initialization of global
variables (-no-def-init-glob)
Consider global variables as uninitialized unless explicitly initialized in code

Description
This option applies to Code Prover only. It does not affect a Bug Finder analysis.

Specify that Polyspace must not consider global and static variables as initialized unless
they are explicitly initialized in the code.

Set Option
User interface (desktop products only): In your project configuration, the option is on
the Inputs & Stubbing node.

Command line: Use the option -no-def-init-glob. See “Command-Line Information”
on page 2-94.

Why Use This Option
The C99 Standard specifies that global variables are implicitly initialized. The default
analysis follows the Standard and considers this implicit initialization.

If you want to initialize specific global variables explicitly, use this option to find the
instances where global variables are not explicitly initialized.

Settings
 On

Polyspace ignores implicit initialization of global and static variables. The verification
generates a red Non-initialized variable error if your code reads a global or static
variable before writing to it.

 Ignore default initialization of global variables (-no-def-init-glob)

2-93

 Off (default)
Polyspace considers global variables and static variables to be initialized according to
C99 or ISO C++ standards. For instance, the default values are:

• 0 for int
• 0 for char
• 0.0 for float

Tips
• If you enable this option, global variables are considered uninitialized unless you

explicitly initialize them in the code.

This option overrides the option Variables to initialize (-main-generator-
writes-variables). Even if you initialize variables with the generated main, this
option forces the analysis to ignore the initialization.

• Static local variables have the same lifetime as global variables even though their
visibility is limited to the function where they are defined. Therefore, the option
applies to static local variables.

Command-Line Information
Parameter: -no-def-init-glob
Default: Off
Example (Code Prover): polyspace-code-prover -sources file_name -no-
def-init-glob
Example (Code Prover Server): polyspace-code-prover-server -sources
file_name -no-def-init-glob

See Also
Non-initialized variable

Topics
“Prepare Scripts for Polyspace Analysis”

2 Option Descriptions

2-94

No STL stubs (-no-stl-stubs)
Do not use Polyspace implementations of functions in the Standard Template Library

Description
Specify that the verification must not use Polyspace implementations of the Standard
Template Library.

Set Option
User interface (desktop products only): In your project configuration, the option is on
the Inputs & Stubbing node. See “Dependency” on page 2-96 for other options that
you must also enable.

Command line: Use the option -no-stl-stubs. See “Command-Line Information” on
page 2-96.

Why Use This Option
The analysis uses an efficient implementation of all class templates from the Standard
Template Library (STL). If your compiler redefines the templates, in some cases, your
compiler implementation can conflict with the Polyspace implementation.

Use this option to prevent Polyspace from using its implementations of STL templates.
You must also explicitly provide the path to your compiler includes. See “C++ Standard
Template Library Stubbing Errors” (Polyspace Code Prover Server).

Settings
 On

The verification does not use Polyspace implementations of the Standard Template
Library.

 No STL stubs (-no-stl-stubs)

2-95

 Off (default)
The verification uses efficient Polyspace implementations of the Standard Template
Library.

Dependency
This option is available only if you set Source code language (-lang) to CPP or C-
CPP.

Command-Line Information
Parameter: -no-stl-stubs
Default: Off
Example (Code Prover): polyspace-code-prover -sources file_name -no-
stl-stubs
Example (Code Prover Server): polyspace-code-prover-server -sources
file_name -no-stl-stubs

See Also

Topics
“Prepare Scripts for Polyspace Analysis”

2 Option Descriptions

2-96

Functions to stub (-functions-to-stub)
Specify functions to stub during analysis

Description
This option applies primarily to a Code Prover analysis.

Specify functions to stub during analysis.

For specified functions, Polyspace :

• Ignores the function definition even if it exists.
• Assumes that the function inputs and outputs have full range of values allowed by

their type.

Set Option
User interface (desktop products only): In your project configuration, the option is on
the Inputs & Stubbing node.

Command line: Use the option -functions-to-stub. See “Command-Line
Information” on page 2-99.

Why Use This Option
If you want the analysis to ignore the code in a function body, you can stub the function.

For instance:

• Suppose you have not completed writing the function and do not want the analysis to
consider the function body. You can use this option to stub the function and then
specify constraints on its return value and modifiable arguments.

• Suppose the analysis of a function body is imprecise. The analysis assumes that the
function returns all possible values that the function return type allows. You can use
this option to stub the function and then specify constraints on its return value.

 Functions to stub (-functions-to-stub)

2-97

Settings
No Default

Enter function names or choose from a list.

•
Click to add a field and enter the function name.

• Click to list functions in your code. Choose functions from the list.

When entering function names, use either the basic syntax or, to differentiate overloaded
functions, the argument syntax. For the argument syntax, separate function arguments
with semicolons. See the following code and table for examples.

//simple function

void test(int a, int b);

//C++ template function

Template <class myType>
myType test(myType a, myType b);

//C++ class method

class A {
 public:
 int test(int var1, int var2);
};

//C++ template class method

template <class myType> class A
{
 public:
 myType test(myType var1, myType var2);
};

Function Type Basic Syntax Argument Syntax
Simple function test test(int; int)

2 Option Descriptions

2-98

Function Type Basic Syntax Argument Syntax
C++ template function test test(myType; myType)
C++ class method A::test A::test(int;int)
C++ template class
method

A<myType>::test A<myType>::test(myType;my
Type)

Tips
The option is more relevant for a Code Prover analysis.

• Code Prover makes assumptions about the arguments and return values of stubbed
functions. For example, Polyspace assumes that the return values of stubbed functions
are full range. These assumptions can affect checks in other sections of the code. See
“Stubbed Functions” (Polyspace Code Prover).

• If you stub a function, you can constrain the range of function arguments and return
value. To specify constraints, use the analysis option Constraint setup (-data-
range-specifications).

• For C functions, these special characters are allowed:() < > ; _

For C++ functions, these special characters are allowed : () < > ; _ * & []

Space characters are allowed for C++, but are not allowed for C functions.

Command-Line Information
Parameter: -functions-to-stub
No Default
Value: function1[,function2[,...]]
Example (Code Prover): polyspace-code-prover -sources file_name -
functions-to-stub function_1,function_2
Example (Code Prover Server): polyspace-code-prover-server -sources
file_name -functions-to-stub function_1,function_2

See Also
Constraint setup (-data-range-specifications)

 Functions to stub (-functions-to-stub)

2-99

Topics
“Prepare Scripts for Polyspace Analysis”

2 Option Descriptions

2-100

Generate stubs for Embedded Coder lookup
tables (-stub-embedded-coder-lookup-
table-functions)
Stub autogenerated functions that use lookup tables and model them more precisely

Description
This option is available only for model-generated code. The option is relevant only if you
generate code from a Simulink model that uses Lookup Table blocks using MathWorks
code generation products.

Specify that the verification must stub autogenerated functions that use certain kinds of
lookup tables in their body. The lookup tables in these functions use linear interpolation
and do not allow extrapolation. That is, the result of using the lookup table always lies
between the lower and upper bounds of the table.

Set Option
If you are running verification from Simulink, use the option “Stub lookup tables”
(Polyspace Code Prover) in Simulink Configuration Parameters, which performs the same
task.

User interface (desktop products only): In your Polyspace project configuration, the
option is on the Inputs & Stubbing node.

Command line: Use the option -stub-embedded-coder-lookup-table-functions.
See “Command-Line Information” on page 2-103.

Why Use This Option
If you use this option, the verification is more precise and has fewer orange checks. The
verification of lookup table functions is usually imprecise. The software has to make
certain assumptions about these functions. To avoid missing a run-time error, the
verification assumes that the result of using the lookup table is within the full range

 Generate stubs for Embedded Coder lookup tables (-stub-embedded-coder-lookup-table-functions)

2-101

allowed by the result data type. This assumption can cause many unproven results
(orange checks) when a lookup table function is called. By using this option, you narrow
down the assumption. For functions that use lookup tables with linear interpolation and
no extrapolation, the result is at least within the bounds of the table.

The option is relevant only if your model has Lookup Table blocks. In the generated code,
the functions corresponding to Lookup Table blocks also use lookup tables. The function
names follow specific conventions. The verification uses the naming conventions to
identify if the lookup tables in the functions use linear interpolation and no extrapolation.
The verification then replaces such functions with stubs for more precise verification.

Settings
 On (default)

For autogenerated functions that use lookup tables with linear interpolation and no
extrapolation, the verification:

• Does not check for run-time errors in the function body.
• Calls a function stub instead of the actual function at the function call sites. The

stub ensures that the result of using the lookup table is within the bounds of the
table.

To identify if the lookup table in the function uses linear interpolation and no
extrapolation, the verification uses the function name. In your analysis results, you
see that the function is not analyzed. If you place your cursor on the function name,
you see the following message:

 Function has been recognized as an Embedded Coder Lookup-Table function.
 It was stubbed by Polyspace to increase precision.
 Unset the -stub-embedded-coder-lookup-table-functions option to analyze
 the code below.

 Off
The verification does not stub autogenerated functions that use lookup tables.

2 Option Descriptions

2-102

Tips
• The option applies to only autogenerated functions. If you integrate your own C/C++

S-Function using lookup tables with the model, these functions do not follow the
naming conventions for autogenerated functions. The option does not cause them to
be stubbed. If you want the same behavior for your handwritten lookup table functions
as the autogenerated functions, use the option -function-behavior-
specifications and map your function to the __ps_lookup_table_clip function.

• If you run verification from Simulink, the option is on by default. For certification
purposes, if you want your verification tool to be independent of the code generation
tool, turn off the option.

Command-Line Information
Parameter: -stub-embedded-coder-lookup-table-functions
Default: On
Example (Code Prover): polyspace-code-prover -sources file_name -stub-
embedded-coder-lookup-table-functions
Example (Code Prover Server): polyspace-code-prover-server -sources
file_name -stub-embedded-coder-lookup-table-functions

See Also

Topics
“Prepare Scripts for Polyspace Analysis”

Introduced in R2016b

 Generate stubs for Embedded Coder lookup tables (-stub-embedded-coder-lookup-table-functions)

2-103

Generate results for sources and (-
generate-results-for)
Specify files on which you want analysis results

Description
Specify files on which you want analysis results.

The option applies only to coding rule violations and code metrics. You cannot suppress
Code Prover run-time checks from select source and header files.

Set Option
User interface (desktop products only): In your project configuration, the option is on
the Inputs & Stubbing node.

Command line: Use the option -generate-results-for. See “Command-Line
Information” on page 2-106.

Why Use This Option
Use this option to see results in header files that are most relevant to you.

For instance, by default, results are generated on header files that are located in the same
folder as the source files. Often, other header files belong to a third-party library. Though
these header files are required for a precise analysis, you are not interested in reviewing
findings in those headers. Therefore, by default, results are not generated for those
headers. If you are interested in certain headers from third-party libraries, change the
default value of this option.

Settings
Default: source-headers

2 Option Descriptions

2-104

source-headers
Results appear on source files and header files in the same folder as the source files
or in subfolders of source file folders.

The source files are the files that you add to the Source folder of your Polyspace
project (or use with the argument -sources at the command line).

all-headers
Results appear on source files and all header files. The header files can be in the same
folder as source files, in subfolders of source file folders or in include folders.

The source files are the files that you add to the Source folder of your Polyspace
project (or use with the argument -sources at the command line).

The include folders are the folders that you add to the Include folder of your
Polyspace project (or use with the argument -I at the command line).

custom
Results appear on source files and the files that you specify. If you enter a folder
name, results appear on header files in that folder.

Click to add a field. Enter a file or folder name.

Tips
1 Use this option in combination with appropriate values for the option Do not

generate results for (-do-not-generate-results-for).

If you choose custom and the values for the two options conflict, the more specific
value determines the display of results. For instance, in the following examples, the
value for the option Generate results for sources and is more specific.

 Generate results for sources and (-generate-results-for)

2-105

Generate results for
sources and

Do not generate
results for

Final Result

custom:

C:\Includes
\Custom_Library\

custom:

C:\Includes

Results are displayed on
header files in
C:\Includes
\Custom_Library\ but
not generated for other
header files in
C:\Includes and its
subfolders.

custom:

C:\Includes
\my_header.h

custom:

C:\Includes\

Results are displayed on
the header file
my_header.h in
C:\Includes\ but not
generated for other
header files in
C:\Includes\ and its
subfolders.

Using these two options together, you can suppress results from all files in a certain
folder but unsuppress select files in those folders.

2 If you choose all-headers for this option, results are displayed on all header files
irrespective of what you specify for the option Do not generate results for.

Command-Line Information
Parameter: -generate-results-for
Value: all-headers | custom=file1[,file2[,...]] | folder1[,folder2[,...]]
Example (Bug Finder): polyspace-bug-finder -lang c -sources file_name -
misra2 required-rules -generate-results-for "C:\usr\include"
Example (Code Prover): polyspace-code-prover -lang c -sources file_name
-misra2 required-rules -generate-results-for "C:\usr\include"
Example (Bug Finder Server): polyspace-bug-finder-server -lang c -
sources file_name -misra2 required-rules -generate-results-for
"C:\usr\include"
Example (Code Prover Server): polyspace-code-prover-server -lang c -
sources file_name -misra2 required-rules -generate-results-for
"C:\usr\include"

2 Option Descriptions

2-106

See Also

Topics
“Prepare Scripts for Polyspace Analysis”

Introduced in R2016a

 Generate results for sources and (-generate-results-for)

2-107

Do not generate results for (-do-not-
generate-results-for)
Specify files on which you do not want analysis results

Description
Specify files on which you do not want analysis results.

The option applies only to coding rule violations, code metrics and unused global
variables. You cannot suppress Code Prover run-time checks from source and header files.

Set Option
User interface (desktop products only): In your project configuration, the option is on
the Inputs & Stubbing node.

Command line: Use the option -do-not-generate-results-for. See “Command-
Line Information” on page 2-112.

Why Use This Option
Use this option to see results in header files that are most relevant to you.

For instance, by default, results are generated on header files that are located in the same
folder as the source files. If you are not interested in reviewing the findings in those
headers, change the default value of this option.

Settings
Default: include-folders

include-folders
Results are not generated for header files in include folders.

2 Option Descriptions

2-108

The include folders are the folders that you add to the Include folder of your
Polyspace project (or use with the argument -I at the command line).

If an include folder is a subfolder of a source folder, results are generated for files in
that include folder even if you specify the option value include-folders. In this
situation, use the option value custom and explicitly specify the include folders to
ignore.

all-headers
Results are not generated for all header files. The header files can be in the same
folder as source files, in subfolders of source file folders or in include folders.

The source files are the files that you add to the Source folder of your Polyspace
project (or use with the argument -sources at the command line).

The include folders are the folders that you add to the Include folder of your
Polyspace project (or use with the argument -I at the command line).

custom
Results are not generated for the files that you specify. If you enter a folder name,
results are suppressed from files in that folder.

Click to add a field. Enter a file or folder name.

Tips
1 Use this option appropriately in combination with appropriate values for the option

Generate results for sources and (-generate-results-for).

If you choose custom and the values for the two options conflict, the more specific
value determines the display of results. For instance, in the following examples, the
value for the option Generate results for sources and is more specific.

 Do not generate results for (-do-not-generate-results-for)

2-109

Generate results for
sources and

Do not generate
results for

Final Result

custom:

C:\Includes
\Custom_Library\

custom:

C:\Includes

Results are displayed on
header files in
C:\Includes
\Custom_Library\ but
not generated for other
header files in
C:\Includes and its
subfolders.

custom:

C:\Includes
\my_header.h

custom:

C:\Includes\

Results are displayed on
the header file
my_header.h in
C:\Includes\ but not
generated for other
header files in
C:\Includes\ and its
subfolders.

Using these two options together, you can suppress results from all files in a certain
folder but unsuppress select files in those folders.

2 If you choose all-headers for this option, results are suppressed from all header
files irrespective of what you specify for the option Generate results for sources
and.

3 If a defect or coding rule violation involves two files and you do not generate results
for one of the files, the defect or rule violation still appears. For instance, if you
define two variables with similar-looking names in files myFile.cpp and myFile.h,
you get a violation of the MISRA C++ rule 2-10-1, even if you do not generate results
for myFile.h. MISRA C++ rule 2-10-1 states that different identifiers must be
typographically unambiguous.

The following results can involve more than one file:

MISRA C: 2004 Rules

• MISRA C: 2004 Rule 5.1 — Identifiers (internal and external) shall not rely on the
significance of more than 31 characters.

• MISRA C: 2004 Rule 5.2 — Identifiers in an inner scope shall not use the same
name as an identifier in an outer scope, and therefore hide that identifier.

2 Option Descriptions

2-110

• MISRA C: 2004 Rule 8.8 — An external object or function shall be declared in one
file and only one file.

• MISRA C: 2004 Rule 8.9 — An identifier with external linkage shall have exactly
one external definition.

MISRA C: 2012 Directives and Rules

• MISRA C: 2012 Directive 4.5 — Identifiers in the same name space with
overlapping visibility should be typographically unambiguous.

• MISRA C: 2012 Rule 5.2 — Identifiers declared in the same scope and name space
shall be distinct.

• MISRA C: 2012 Rule 5.3 — An identifier declared in an inner scope shall not hide
an identifier declared in an outer scope.

• MISRA C: 2012 Rule 5.4 — Macro identifiers shall be distinct.
• MISRA C: 2012 Rule 5.5 — Identifiers shall be distinct from macro names.
• MISRA C: 2012 Rule 8.5 — An external object or function shall be declared once

in one and only one file.
• MISRA C: 2012 Rule 8.6 — An identifier with external linkage shall have exactly

one external definition.

MISRA C++ Rules

• MISRA C++ Rule 2-10-1 — Different identifiers shall be typographically
unambiguous.

• MISRA C++ Rule 2-10-2 — Identifiers declared in an inner scope shall not hide an
identifier declared in an outer scope.

• MISRA C++ Rule 3-2-2 — The One Definition Rule shall not be violated.
• MISRA C++ Rule 3-2-3 — A type, object or function that is used in multiple

translation units shall be declared in one and only one file.
• MISRA C++ Rule 3-2-4 — An identifier with external linkage shall have exactly

one definition.
• MISRA C++ Rule 7-5-4 — Functions should not call themselves, either directly or

indirectly.
• MISRA C++ Rule 15-4-1 — If a function is declared with an exception-
specification, then all declarations of the same function (in other translation units)
shall be declared with the same set of type-ids.

 Do not generate results for (-do-not-generate-results-for)

2-111

JSF C++ Rules

• JSF C++ Rule 46 — User-specified identifiers (internal and external) will not rely
on significance of more than 64 characters.

• JSF C++ Rule 48 — Identifiers will not differ by only a mixture of case, the
presence/absence of the underscore character, the interchange of the letter O with
the number 0 or the letter D, the interchange of the letter I with the number 1 or
the letter l, the interchange of the letter S with the number 5, the interchange of
the letter Z with the number 2 and the interchange of the letter n with the letter
h.

• JSF C++ Rule 137 — All declarations at file scope should be static where possible.
• JSF C++ Rule 139 — External objects will not be declared in more than one file.

Polyspace Bug Finder Defects

• Variable shadowing — Variable hides another variable of same name with
nested scope.

• Declaration mismatch — Mismatch occurs between function or variable
declarations.

4 If a global variable is never used after declaration, it appears in Code Prover results
as an unused global variable. However, if it is declared in a file for which you do not
want results, you do not see the unused variable in your verification results.

5 If a result (coding rule violation or Bug Finder defect) is inside a macro, Polyspace
typically shows the result on the macro definition instead of the macro occurrences
so that you review the result only once. Even if the macro is used in a suppressed file,
the result is still shown on the macro definition, if the definition occurs in an
unsuppressed file.

Command-Line Information
Parameter: -do-not-generate-results-for
Value: all-headers | include-folders | custom=file1[,file2[,...]] |
folder1[,folder2[,...]]
Example (Bug Finder): polyspace-bug-finder -lang c -sources file_name -
misra2 required-rules -do-not-generate-results-for "C:\usr\include"
Example (Code Prover): polyspace-code-prover -lang c -sources file_name
-misra2 required-rules -do-not-generate-results-for "C:\usr\include"

2 Option Descriptions

2-112

Example (Bug Finder Server): polyspace-bug-finder-server -lang c -
sources file_name -misra2 required-rules -do-not-generate-results-
for "C:\usr\include"
Example (Code Prover Server): polyspace-code-prover-server -lang c -
sources file_name -misra2 required-rules -do-not-generate-results-
for "C:\usr\include"

See Also
Generate results for sources and (-generate-results-for)

Topics
“Prepare Scripts for Polyspace Analysis”

Introduced in R2016a

 Do not generate results for (-do-not-generate-results-for)

2-113

External multitasking configuration
Enable setup of multitasking configuration from external file definitions

Description
Specify whether you want to use definitions from external files to set up the multitasking
configuration of your Polyspace project. The supported external file formats are:

• ARXML files for AUTOSAR projects
• OIL files for OSEK projects

Set Option
User interface: In the Configuration pane, the option is available on the Multitasking
node.

Command line: See “Command-Line Information” on page 2-115.

Why Use This Option
If your AUTOSAR project includes ARXML files with ECU configuration parameters, or if
your OSEK project includes OIL files, Polyspace can parse these files. The software sets
up tasks, interrupts, cyclical tasks, and critical sections. You do not have to set them up
manually.

Settings
 On

Polyspace parses the external files that you provide in the format that you specify to
set up the multitasking configuration of your project.

osek
Look for and parse OIL files to extract multitasking description.

2 Option Descriptions

2-114

autosar
Look for and parse AUTOSAR XML files to extract multitasking description.

 Off (default)
Polyspace does not set up the multitasking configuration of your project.

Command-Line Information
There is no single command-line option to turn on external multitasking configuration. By
using the -osek-multitasking option or the -autosar-multitasking option, you
enable external multitasking configuration.

See Also
ARXML files selection (-autosar-multitasking) | OIL files selection (-
osek-multitasking)

Topics
“Prepare Scripts for Polyspace Analysis”
“Analyze Multitasking Programs in Polyspace”

Introduced in R2018a

 External multitasking configuration

2-115

OIL files selection (-osek-multitasking)
Set up multitasking configuration from OIL file definition

Description
Specify the OIL files that Polyspace parses to set up the multitasking configuration of
your OSEK project.

Set Option
User interface: In the Configuration pane, the option is available on the Multitasking
node. See Dependencies on page 2-120 for other options you must also enable.

Command line: Use the option -osek-multitasking. See “Command-Line
Information” on page 2-120.

Why Use This Option
If your project includes OIL files, Polyspace can parse these files to set up tasks,
interrupts, cyclical tasks, and critical sections. You do not have to set them up manually.

Settings
 On

Polyspace looks for and parses OIL files to set up your multitasking configuration.
auto

Look for OIL files in your project source and include folders, but not in their
subfolders.

custom
Look for OIL files on the specified path and the path subfolders. You can specify a
path to the OIL files or to the folder containing the files.

2 Option Descriptions

2-116

When you select this option, in your source code, Polyspace supports these OSEK
multitasking keywords:

• TASK
• DeclareTask
• ActivateTask
• DeclareResource
• GetResource
• ReleaseResource
• ISR
• DeclareEvent
• DeclareAlarm

Polyspace parses the OIL files that you provide for TASK, ISR, RESOURCE, and ALARM
definitions. The analysis uses these definitions and the supported multitasking keywords
to configure tasks, interrupts, cyclical tasks, and critical sections.

Example: Analyze Your OSEK Multitasking Project

This example shows how to set up the multitasking configuration of an OSEK project and
run an analysis on this project. To try the steps in this example, use the demo files in the
folder polyspaceroot/help/toolbox/bugfinder/examples/
External_multitasking/OSEK or polyspaceroot/help/toolbox/codeprover/
examples/External_multitasking/OSEK. polyspaceroot is the Polyspace
installation folder. The analysis results apply to this example code.

 OIL files selection (-osek-multitasking)

2-117

#include <assert.h>
#include "include/example_osek_multi.h"

int var1;
int var2;
int var3;

DeclareAlarm(Cyclic_task_activate);
DeclareResource(res1);
DeclareTask(init);
TASK(afterinit1);

TASK(init) // task
{

 var2++;
 ActivateTask(afterinit1);
 var3++;
 GetResource(res1); // critical section begins
 var1++;
 ReleaseResource(res1); // critical section ends
}

TASK(afterinit1) // task
{
 var3++;
 var2++;
 GetResource(res1); // critical section begins
 var1++;
 ReleaseResource(res1); // critical section ends

}

void main()
{}

To set up your multitasking configuration and analyze the code:

1 Copy the contents of polyspaceroot/help/toolbox/bugfinder/examples/
External_multitasking/OSEK or polyspaceroot/help/toolbox/
codeprover/examples/External_multitasking/OSEK to your machine, for
instance in C:\Polyspace_worskpace\OSEK.

2 Option Descriptions

2-118

2 Run an analysis on your OSEK project by using the command:

• Bug Finder:

polyspace-bug-finder -sources ^
C:\Polyspace_workspace\OSEK\example_osek_multitasking.c ^
-osek-multitasking auto

• Code Prover:

polyspace-code-prover -sources ^
C:\Polyspace_workspace\OSEK\example_osek_multitasking.c ^
-osek-multitasking auto

• Bug Finder Server:

polyspace-bug-finder-server -sources ^
C:\Polyspace_workspace\OSEK\example_osek_multitasking.c ^
-osek-multitasking auto

• Code Prover Server:

polyspace-code-prover-server -sources ^
C:\Polyspace_workspace\OSEK\example_osek_multitasking.c ^
-osek-multitasking auto

Bug Finder detects a data race on variable var3 because of multiple read and write
operation from tasks init and afterinit1. See Data race.

#include <assert.h>
#include "include/example_osek_multi.h"

int var1;
int var2;
int var3;

There is no defect on var2 since afterinit1 goes to an active state (ActivateTask())
after init increments var2. Similarly, there is no defect on var1 because it is protected
by the GetResource() and ReleaseResource() calls.

Code Prover detects that var3 is a potentially unprotected global variable because it is
used in tasks init and afterinit1 with no protection from interruption during the read
and write operations. The analysis also shows that the cyclic task operation on var4 can
potentially cause an overflow. See Potentially unprotected variable and
Overflow.

 OIL files selection (-osek-multitasking)

2-119

#include <assert.h>
#include "include/example_osek_multi.h"

int var1;
int var2;
int var3;

...
void func()
{
 var4++;
}

Variable var2 is not shared because afterinit1 goes to an active state
(ActivateTask()) after init increments var2. Variable var1 is a protected variable
through the critical sections from the GetResource() and ReleaseResource() calls.

To see how Polyspace models the TASK, ISR, and RESOURCE definitions from your OIL
files, open the Concurrency window from the Dashboard pane.

 Off (default)
Polyspace does not set up a multitasking configuration for your OSEK project.

Additional Considerations
• The analysis ignores TerminateTask() declarations in your source code and

considers that subsequent code is executed.
• Polyspace ignores syntax elements of your OIL files that do not follow the syntax
defined here.

Dependencies
To enable this option in the user interface of the desktop products, first select the option
External multitasking configuration.

Command-Line Information
Parameter: -osek-multitasking

2 Option Descriptions

2-120

https://www.irisa.fr/alf/downloads/puaut/TPNXT/images/oil25.pdf

Value: auto | custom='file1 [,file2, dir1,...]'
Default: Off
Example (Bug Finder): polyspace-bug-finder -sources source_path -I
include_path -osek-multitasking custom='path\to\file1.oil, path\to
\dir'
Example (Code Prover): polyspace-code-prover -sources source_path -I
include_path -osek-multitasking custom='path\to\file1.oil, path\to
\dir'
Example (Bug Finder Server): polyspace-bug-finder-server -sources
source_path -I include_path -osek-multitasking custom='path\to
\file1.oil, path\to\dir'
Example (Code Prover Server): polyspace-code-prover-server -sources
source_path -I include_path -osek-multitasking custom='path\to
\file1.oil, path\to\dir'

See Also
Introduced in R2017b

 OIL files selection (-osek-multitasking)

2-121

ARXML files selection (-autosar-
multitasking)
Set up multitasking configuration from ARXML file definitions

Description
To detect data races in large AUTOSAR applications, use this option with Polyspace Bug
Finder.

Specify the ARXML files that Polyspace parses to set up the multitasking configuration of
your AUTOSAR project.

Set Option
User interface: In the Configuration pane, the option is available on the Multitasking
node. See Dependencies on page 2-123 for other options you must also enable.

Command line: Use the option -autosar-multitasking. See “Command-Line
Information” on page 2-120.

Why Use This Option
If your project includes ARXML files with <ECUC-CONTAINER-VALUE> elements,
Polyspace can parse these files to set up tasks, interrupts, cyclical tasks, and critical
sections. You do not have to set them up manually.

Settings
 On

Polyspace looks for and parses ARXML files to set up your multitasking configuration.

When you select this option, the software assumes that you use the OSEK multitasking
API in your source code to declare and define tasks and interrupts. Polyspace supports
these OSEK multitasking keywords:

2 Option Descriptions

2-122

• TASK
• DeclareTask
• ActivateTask
• DeclareResource
• GetResource
• ReleaseResource
• ISR
• DeclareEvent
• DeclareAlarm

Polyspace parses the ARXML files that you provide for OsTask, OsIsr, OsResource,
OsAlarm, and OsEvent definitions. The analysis uses these definitions and the supported
multitasking keywords to configure tasks, interrupts, cyclical tasks, and critical sections.

To see how Polyspace models the OsTask, OsIsr, and OsResource definitions from your
ARXML files, open the Concurrency window from the Dashboard pane. In that window,
under the Entry points column, the names of the elements are extracted from their
<SHORT-NAME> values in the ARXML files.

 Off (default)
Polyspace does not set up a multitasking configuration for your AUTOSAR project.

Additional Considerations
• The analysis ignores TerminateTask() declarations in your source code and

considers that subsequent code is executed.
• Polyspace supports multitasking configuration only from ARXML files for AUTOSAR
specification version 4.0 and later.

Dependencies
To enable this option in the user interface of the desktop products, first select the option
External multitasking configuration.

 ARXML files selection (-autosar-multitasking)

2-123

Command-Line Information
Parameter: -autosar-multitasking
Value: file1 [,file2, dir1,...]
Default: Off
Example (Bug Finder): polyspace-bug-finder -sources source_path -I
include_path -autosar-multitasking C:\Polyspace_Workspace\AUTOSAR
\myFile.arxml
Example (Bug Finder Server): polyspace-bug-finder-server -sources
source_path -I include_path -autosar-multitasking
C:\Polyspace_Workspace\AUTOSAR\myFile.arxml

See Also
Enable automatic concurrency detection for Code Prover (-enable-
concurrency-detection) | External multitasking configuration | OIL
files selection (-osek-multitasking)

Topics
“Prepare Scripts for Polyspace Analysis”
“Analyze Multitasking Programs in Polyspace”

Introduced in R2018a

2 Option Descriptions

2-124

Configure multitasking manually
Consider that code is intended for multitasking

Description
Specify whether your code is a multitasking application. This option allows you to
manually configure the multitasking structure for Polyspace.

Set Option
User interface (desktop products only): In your project configuration, the option is
available on the Multitasking node.

Command line: See “Command-Line Information” on page 2-126.

Why Use This Option
By default, Bug Finder determines your multitasking model from your use of
multithreading functions. In Code Prover, you have to enable automatic concurrency
detection with the option Enable automatic concurrency detection for Code
Prover (-enable-concurrency-detection). However, in some cases, using
automatic concurrency detection can slow down the Code Prover analysis.

In cases where automatic concurrency detection is not supported, you can explicitly
specify your multitasking model by using this option. Once you select this option, you can
explicitly specify your entry point functions, cyclic tasks, interrupts and protection
mechanisms for shared variables, such as critical section details.

A Code Prover verification uses your specifications to determine:

• Whether a global variable is shared.

See “Global Variables” (Polyspace Code Prover Access).
• Whether a run-time error can occur.

 Configure multitasking manually

2-125

For instance, if the operation var++ occurs in the body of a cyclic task and you do not
impose a limit on var, the operation can overflow. The analysis detects the possible
overflow.

A Bug Finder analysis uses your specifications to look for concurrency defects. For more
information, see “Concurrency Defects” (Polyspace Bug Finder Access).

Settings
 On

The code is intended for a multitasking application.

You have to explicitly specify your multitasking configuration using other
Polyspaceoptions. See “Configuring Polyspace Multitasking Analysis Manually”.

 Off (default)
The code is not intended for a multitasking application.

Disabling the option has this additional effect in Code Prover:

• If a main exists, Code Prover verifies only those functions that are called by the
main.

• If a main does not exist, Polyspace verifies the functions that you specify. To verify
the functions, Polyspace generates a main function and calls functions from the
generated main in a sequence that you specify. For more information, see Verify
module or library (-main-generator).

Tips
If you run a file by file verification in Code Prover, your multitasking options are ignored.
See Verify files independently (-unit-by-unit).

Command-Line Information
There is no single command-line option to turn on multitasking analysis. By using any of
the options Tasks (-entry-points), Cyclic tasks (-cyclic-tasks) or
Interrupts (-interrupts), you turn on multitasking analysis.

2 Option Descriptions

2-126

See Also
-non-preemptable-tasks | -preemptable-interrupts | Critical section
details (-critical-section-begin -critical-section-end) | Cyclic tasks
(-cyclic-tasks) | Tasks (-entry-points) | Tasks (-entry-points) |
Temporally exclusive tasks (-temporal-exclusions-file)

Topics
“Prepare Scripts for Polyspace Analysis”
“Analyze Multitasking Programs in Polyspace”
“Configuring Polyspace Multitasking Analysis Manually”
“Protections for Shared Variables in Multitasking Code”

 Configure multitasking manually

2-127

Enable automatic concurrency detection for
Code Prover (-enable-concurrency-
detection)
Automatically detect certain families of multithreading functions

Description
This option affects a Code Prover analysis only.

Specify whether the analysis must automatically detect POSIX®, VxWorks®, Windows,
μC/OS II and other multithreading functions.

Set Option
User interface (desktop products only): In your project configuration, the option is
available on the Multitasking node. See “Dependencies” (Polyspace Code Prover) for
other options that you must enable or disable.

Command line: Use the option -enable-concurrency-detection. See “Command-
Line Information” on page 2-129.

Why Use This Option
If you use this option, Polyspace determines your multitasking model from your use of
multithreading functions. In Bug Finder, automatic concurrency detection is enabled by
default. In Code Prover, you have to explicitly enable automatic concurrency detection.

In some cases, using automatic concurrency detection can slow down the Code Prover
analysis. In those cases, you can choose to not enable this option and explicitly specify
your multitasking model. See “Configuring Polyspace Multitasking Analysis Manually”.

2 Option Descriptions

2-128

Settings
 On

If you use one of the supported functions for multitasking, the analysis automatically
detects your multitasking model from your code.

For a list of supported multitasking functions and limitations in auto-detection of
threads, see “Auto-Detection of Thread Creation and Critical Section in Polyspace”.

 Off (default)
The analysis does not attempt to detect the multitasking model from your code.

If you want to manually configure your multitasking model, see “Configuring
Polyspace Multitasking Analysis Manually”.

Dependencies
If you enable this option, your code must contain a main function. You cannot use the
Code Prover options to generate a main.

Command-Line Information
Parameter: -enable-concurrency-detection
Default: Off
Example (Code Prover): polyspace-code-prover -sources file_name -
enable-concurrency-detection
Example (Code Prover Server): polyspace-code-prover-server -sources
file_name -enable-concurrency-detection

See Also

Topics
“Prepare Scripts for Polyspace Analysis”
“Analyze Multitasking Programs in Polyspace”
“Auto-Detection of Thread Creation and Critical Section in Polyspace”

 Enable automatic concurrency detection for Code Prover (-enable-concurrency-detection)

2-129

Tasks (-entry-points)
Specify functions that serve as tasks to your multitasking application

Description
Specify functions that serve as tasks to your code. If the function does not exist, the
verification warns you and continues the verification.

Set Option
User interface (desktop products only): In your project configuration, the option is
available on the Multitasking node. See “Dependencies” on page 2-131 for other options
you must also enable.

Command line: Use the option -entry-points. See “Command-Line Information” on
page 2-132.

Why Use This Option
Use this option when your code is intended for multitasking.

To specify cyclic tasks and interrupts, use the options Cyclic tasks (-cyclic-
tasks) and Interrupts (-interrupts). Use this option to specify other tasks.

A Code Prover analysis uses your specifications to determine:

• Whether a global variable is shared.

See “Global Variables” (Polyspace Code Prover Access).
• Whether a run-time error can occur.

For instance, if the operation var++ occurs in the body of a cyclic task and you do not
impose a limit on var, the operation can overflow. The analysis detects the possible
overflow.

A Bug Finder analysis uses your specifications to look for concurrency defects. For more
information, see “Concurrency Defects” (Polyspace Bug Finder Access).

2 Option Descriptions

2-130

Settings
No Default

Enter function names or choose from a list.

•
Click to add a field and enter the function name.

• Click to list functions in your code. Choose functions from the list.

Dependencies
To enable this option in the user interface of the desktop products, first select the option
Configure multitasking manually.

Tips
• In Code Prover, the functions representing entry points must have the form

void functionName (void)

• If a function func takes arguments, you cannot use it directly as task. To use func as
task:

1 Create a new function newFunc. The declaration must be of the form void
newFunc (void).

2 Declare arguments to func as volatile variables local to newFunc. Call func
inside newFunc.

3 Specify newFunc as a task.
• If you specify a function as a task, you must provide its definition. Otherwise, a Code

Prover verification stops with the error message:

task func_name must be a userdef function without parameters

A Bug Finder analysis continues but does not consider the function as an entry point.
• If you run a file by file verification in Code Prover, your multitasking options are

ignored. See Verify files independently (-unit-by-unit).

 Tasks (-entry-points)

2-131

Command-Line Information
Parameter: -entry-points
No Default
Value: function1[,function2[,...]]
Example (Bug Finder): polyspace-bug-finder -sources file_name -entry-
points func_1,func_2
Example (Code Prover): polyspace-code-prover -sources file_name -entry-
points func_1,func_2
Example (Bug Finder Server): polyspace-bug-finder-server -sources
file_name -entry-points func_1,func_2
Example (Code Prover Server): polyspace-code-prover-server -sources
file_name -entry-points func_1,func_2

See Also
-non-preemptable-tasks | -preemptable-interrupts | Cyclic tasks (-
cyclic-tasks) | Interrupts (-interrupts)

Topics
“Prepare Scripts for Polyspace Analysis”
“Analyze Multitasking Programs in Polyspace”
“Configuring Polyspace Multitasking Analysis Manually”
“Protections for Shared Variables in Multitasking Code”

2 Option Descriptions

2-132

Cyclic tasks (-cyclic-tasks)
Specify functions that represent cyclic tasks

Description
Specify functions that represent cyclic tasks. The analysis assumes that operations in the
function body:

• Can execute any number of times.
• Can be interrupted by noncyclic tasks, other cyclic tasks and interrupts. Noncyclic

tasks are specified with the option Tasks (-entry-points) and interrupts are
specified with the option Interrupts (-interrupts).

To model a cyclic task that cannot be interrupted by other cyclic tasks, specify the task
as nonpreemptable. See -non-preemptable-tasks. For examples, see “Define
Preemptable Interrupts and Nonpreemptable Tasks”.

Set Option
User interface (desktop products only): In your project configuration, the option is
available on the Multitasking node. See “Dependencies” on page 2-135 for other options
you must also enable.

Command line: Use the option -cyclic-tasks. See “Command-Line Information” on
page 2-135.

Why Use This Option
Use this option to specify cyclic tasks in your multitasking code. The functions that you
specify must have the prototype:

void function_name(void);

A Code Prover verification uses your specifications to determine:

• Whether a global variable is shared.

 Cyclic tasks (-cyclic-tasks)

2-133

See “Global Variables” (Polyspace Code Prover Access).
• Whether a run-time error can occur.

For instance, if the operation var++ occurs in the body of a cyclic task and you do not
impose a limit on var, the operation can overflow. The analysis detects the possible
overflow.

A Bug Finder analysis uses your specifications to look for concurrency defects. For the
Data race defect, the software establishes the following relations between preemptable
tasks and other tasks.

• Data race between two preemptable tasks:

Unless protected, two operations in different preemptable tasks can interfere with
each other. If the operations use the same shared variable without protection, a data
race can occur.

If both operations are atomic, to see the defect, you have to enable the checker Data
race including atomic operations.

• Data race between a preemptable task and a nonpreemptable task or interrupt:

• An atomic operation in a preemptable task cannot interfere with an operation in a
nonpreemptable task or an interrupt. Even if the operations use the same shared
variable without protection, a data race cannot occur.

• A nonatomic operation in a preemptable task also cannot interfere with an
operation in a nonpreemptable task or an interrupt. However, the latter operation
can interrupt the former. Therefore, if the operations use the same shared variable
without protection, a data race can occur.

For more information, see “Concurrency Defects” (Polyspace Bug Finder Access).

Settings
No Default

Enter function names or choose from a list.

•
Click to add a field and enter the function name.

2 Option Descriptions

2-134

• Click to list functions in your code. Choose functions from the list.

Dependencies
To enable this option in the user interface of the desktop products, first select the option
Configure multitasking manually.

Tips
• In Code Prover, the functions representing cyclic tasks must have the form

void functionName (void)
• If a function func takes arguments, you cannot use it directly as a cyclic task. To use

func as cyclic task:

1 Create a new function newFunc. The declaration must be of the form void
newFunc (void).

2 Declare arguments to func as volatile variables local to newFunc. Call func
inside newFunc.

3 Specify newFunc as cyclic task.
• If you specify a function as a cyclic task, you must provide its definition. Otherwise, a

Code Prover verification stops with the error message:

task func_name must be a userdef function without parameters

A Bug Finder analysis continues but does not consider the function as a cyclic task.
• If you run a file by file verification in Code Prover, your multitasking options are

ignored. See Verify files independently (-unit-by-unit).

Command-Line Information
Parameter: -cyclic-tasks
No Default
Value: function1[,function2[,...]]
Example (Bug Finder): polyspace-bug-finder -sources file_name -cyclic-
tasks func_1,func_2

 Cyclic tasks (-cyclic-tasks)

2-135

Example (Code Prover): polyspace-code-prover -sources file_name -
cyclic-tasks func_1,func_2
Example (Bug Finder Server): polyspace-bug-finder-server -sources
file_name -cyclic-tasks func_1,func_2
Example (Code Prover Server): polyspace-code-prover-server -sources
file_name -cyclic-tasks func_1,func_2

See Also
-non-preemptable-tasks | -preemptable-interrupts | Interrupts (-
interrupts) | Tasks (-entry-points)

Topics
“Prepare Scripts for Polyspace Analysis”
“Analyze Multitasking Programs in Polyspace”
“Configuring Polyspace Multitasking Analysis Manually”
“Protections for Shared Variables in Multitasking Code”
“Define Preemptable Interrupts and Nonpreemptable Tasks”

Introduced in R2016b

2 Option Descriptions

2-136

Interrupts (-interrupts)
Specify functions that represent nonpreemptable interrupts

Description
Specify functions that represent nonpreemptable interrupts. The analysis assumes that
operations in the function body:

• Can execute any number of times.
• Cannot be interrupted by noncyclic tasks, cyclic tasks or other interrupts. Noncyclic

tasks are specified with the option Tasks (-entry-points) and cyclic tasks are
specified with the option Cyclic tasks (-cyclic-tasks).

To model an interrupt that can be interrupted by other interrupts, specify the interrupt
as preemptable. See -preemptable-interrupts. For examples, see “Define
Preemptable Interrupts and Nonpreemptable Tasks”.

Set Option
User interface (desktop products only): In your project configuration, the option is
available on the Multitasking node. See “Dependencies” on page 2-139 for other options
you must also enable.

Command line: Use the option -interrupts. See “Command-Line Information” on
page 2-139.

Why Use This Option
Use this option to specify interrupts in your multitasking code. The functions that you
specify must have the prototype:

void function_name(void);

A Code Prover verification uses your specifications to determine:

• Whether a global variable is shared.

 Interrupts (-interrupts)

2-137

See “Global Variables” (Polyspace Code Prover Access).
• Whether a run-time error can occur.

For instance, if the operation var=INT_MAX; occurs in an interrupt and var++ occurs
in the body of a task, an overflow can occur if the interrupt excepts before the
operation in the task. The analysis detects the possible overflow.

A Bug Finder analysis uses your specifications to look for concurrency defects. For the
Data race defect, the analysis establishes the following relations between interrupts
and other tasks:

• Data race between two interrupts:

Two operations in different interrupts cannot interfere with each other (unless one of
the interrupts is preemptable). Even if the operations use the same shared variable
without protection, a data race cannot occur.

• Data race between an interrupt and another task:

• An operation in an interrupt cannot interfere with an atomic operation in any other
task. Even if the operations use the same shared variable without protection, a data
race cannot occur.

• An operation in an interrupt can interfere with a nonatomic operation in any other
task unless the other task is also a nonpreemptable interrupt. Therefore, if the
operations use the same shared variable without protection, a data race can occur.

See “Concurrency Defects” (Polyspace Bug Finder Access).

Settings
No Default

Enter function names or choose from a list.

•
Click to add a field and enter the function name.

• Click to list functions in your code. Choose functions from the list.

2 Option Descriptions

2-138

Dependencies
To enable this option in the user interface of the desktop products, first select the option
Configure multitasking manually.

Tips
• In Code Prover, the functions representing interrupts must have the form

void functionName (void)

• If a function func takes arguments, you cannot use it directly as an interrupt. To use
func as interrupt:

1 Create a new function newFunc. The declaration must be of the form void
newFunc (void).

2 Declare arguments to func as volatile variables local to newFunc. Call func
inside newFunc.

3 Specify newFunc as interrupt.
• If you specify a function as an interrupt, you must provide its definition. Otherwise, a

Code Prover verification stops with the error message:

task func_name must be a userdef function without parameters

A Bug Finder analysis continues but does not consider the function as an interrupt.
• If you run a file by file verification in Code Prover, your multitasking options are

ignored. See Verify files independently (-unit-by-unit).

Command-Line Information
Parameter: -interrupts
No Default
Value: function1[,function2[,...]]
Example (Bug Finder): polyspace-bug-finder -sources file_name -
interrupts func_1,func_2
Example (Code Prover): polyspace-code-prover -sources file_name -
interrupts func_1,func_2

 Interrupts (-interrupts)

2-139

Example (Bug Finder Server): polyspace-bug-finder-server -sources
file_name -interrupts func_1,func_2
Example (Code Prover Server): polyspace-code-prover-server -sources
file_name -interrupts func_1,func_2

See Also
-non-preemptable-tasks | -preemptable-interrupts | Cyclic tasks (-
cyclic-tasks) | Tasks (-entry-points)

Topics
“Prepare Scripts for Polyspace Analysis”
“Analyze Multitasking Programs in Polyspace”
“Configuring Polyspace Multitasking Analysis Manually”
“Protections for Shared Variables in Multitasking Code”
“Define Preemptable Interrupts and Nonpreemptable Tasks”

Introduced in R2016b

2 Option Descriptions

2-140

Disabling all interrupts (-routine-disable-
interrupts -routine-enable-interrupts)
Specify routines that disable and reenable interrupts.

Description
This option affects a Bug Finder analysis only.

Specify a routine that disables all interrupts and a routine that reenables all interrupts.

Set Option
User interface (desktop products only): In your project configuration, the option is
available on the Multitasking node. See “Dependencies” on page 2-142 for other options
you must also enable.

Command line: Use the option -routine-disable-interrupts and -routine-
enable-interrupts. See “Command-Line Information” on page 2-144.

Why Use This Option
The analysis uses the information to look for data race defects. For instance, in the
following code, the function disable_all_interrupts disables all interrupts until the
function enable_all_interrupts is called. Even if task, isr1 and isr2 run
concurrently, the operations x=0 or x=1 cannot interrupt the operation x++. There are no
data race defects.

int x;

void isr1() {
 x = 0;
}

void isr2() {
 x = 1;
}

 Disabling all interrupts (-routine-disable-interrupts -routine-enable-interrupts)

2-141

void task() {
 disable_all_interrupts();
 x++;
 enable_all_interrupts();
}

Settings
No Default

• In Disabling routine, enter the routine that disables all interrupts.
• In Enabling routine, enter the routine that reenables all interrupts.

Enter function names or choose from a list.

•
Click to add a field and enter the function name.

• Click to list functions in your code. Choose functions from the list.

Dependencies
To enable this option in the user interface of the desktop products, first select the option
Configure multitasking manually.

Tips
• The routine that you specify for the option disables preemption by all:

• Non-cyclic tasks.

See Tasks (-entry-points).
• Cyclic tasks.

See Cyclic tasks (-cyclic-tasks).
• Interrupts.

2 Option Descriptions

2-142

See Interrupts (-interrupts).

In other words, the analysis considers that the body of operations between the
disabling routine and the enabling routine is atomic and not interruptible at all.

• Protection via disabling interrupts is conceptually different from protection via critical
sections.

In the Polyspace multitasking model, to protect two sections of code from each other
via critical sections, you have to embed them in the same critical section. In other
words, you have to place the two sections between calls to the same lock and unlock
function.

For instance, suppose you use critical sections as follows:

void isr1() {
 begin_critical_section();
 x = 0;
 end_critical_section();
}

void isr2() {
 x = 1;
}

void task() {
 begin_critical_section();
 x++;
 end_critical_section();
}

Here, the operation x++ is protected from the operation x=0 in isr1, but not from the
operation x=1 in isr2. If the function begin_critical_section disabled all
interrupts, calling it before x++ would have been sufficient to protect it.

Typically, you use one pair of routines in your code to disable and reenable interrupts,
but you can have many pairs of lock and unlock functions that implement critical
sections.

• The routines that disable and enable interrupts must be functions. For instance, if you
define a function-like macro:

#define disable_interrupt() interrupt_flag=0

You cannot use the macro disable_interrupt() as routine disabling interrupts.

 Disabling all interrupts (-routine-disable-interrupts -routine-enable-interrupts)

2-143

Command-Line Information
Parameter: -routine-disable-interrupts | -routine-enable-interrupts
No Default
Value: function_name
Example (Bug Finder): polyspace-bug-finder -sources file_name -routine-
disable-interrupts atomic_section_begins -routine-enable-interrupts
atomic_section_ends
Example (Bug Finder Server): polyspace-bug-finder-server -sources
file_name -routine-disable-interrupts atomic_section_begins -
routine-enable-interrupts atomic_section_ends

See Also
-non-preemptable-tasks | -preemptable-interrupts | Critical section
details (-critical-section-begin -critical-section-end) | Cyclic tasks
(-cyclic-tasks) | Interrupts (-interrupts) | Tasks (-entry-points) |
Temporally exclusive tasks (-temporal-exclusions-file)

Topics
“Prepare Scripts for Polyspace Analysis”
“Analyze Multitasking Programs in Polyspace”
“Configuring Polyspace Multitasking Analysis Manually”
“Protections for Shared Variables in Multitasking Code”
“Define Atomic Operations in Multitasking Code”
“Concurrency Defects” (Polyspace Bug Finder Access)

Introduced in R2017a

2 Option Descriptions

2-144

Critical section details (-critical-section-
begin -critical-section-end)
Specify functions that begin and end critical sections

Description
When verifying multitasking code, Polyspace considers that a critical section lies between
calls to a lock function and an unlock function.

lock();
/* Critical section code */
unlock();

Specify the lock and unlock function names for your critical sections (for instance,
lock() and unlock() in above example).

Set Option
User interface (desktop products only): In your project configuration, the option is
available on the Multitasking node. See “Dependencies” on page 2-146 for other options
you must also enable.

Command line: Use the option -critical-section-begin and -critical-
section-end. See “Command-Line Information” on page 2-148.

Why Use This Option
When a task my_task calls a lock function my_lock, other tasks calling my_lock must
wait till my_task calls the corresponding unlock function. Therefore, critical section
operations in the other tasks cannot interrupt critical section operations in my_task.

For instance, the operation var++ in my_task1 and my_task2 cannot interrupt each
other.

int var;

 Critical section details (-critical-section-begin -critical-section-end)

2-145

void my_task1() {
 my_lock();
 var++;
 my_unlock();
}

void my_task2() {
 my_lock();
 var++;
 my_unlock();
}

Using your specifications, a Code Prover verification checks if your placement of lock and
unlock functions protects all shared variables from concurrent access. When determining
values of those variables, the verification accounts for the fact that critical sections in
different tasks do not interrupt each other.

A Bug Finder analysis uses the critical section information to look for concurrency defects
such as data race and deadlock.

Settings
No Default

Click to add a field.

• In Starting routine, enter name of lock function.
• In Ending routine, enter name of unlock function.

Enter function names or choose from a list.

•
Click to add a field and enter the function name.

• Click to list functions in your code. Choose functions from the list.

Dependencies
To enable this option in the user interface of the desktop products, first select the option
Configure multitasking manually.

2 Option Descriptions

2-146

Tips
• You can also use primitives such as the POSIX functions pthread_mutex_lock and

pthread_mutex_unlock to begin and end critical sections. For a list of primitives
that Polyspace can detect automatically, see “Auto-Detection of Thread Creation and
Critical Section in Polyspace”.

• For function calls that begin and end critical sections, Polyspace ignores the function
arguments.

For instance, Polyspace treats the two code sections below as the same critical
section.

Starting routine: my_lock
Ending routine: my_unlock
void my_task1() {
 my_lock(1);
 /* Critical section code */
 my_unlock(1);
}

void my_task2() {
 my_lock(2);
 /* Critical section code */
 my_unlock(2);
}

To work around the limitation, see “Define Critical Sections with Functions That Take
Arguments”.

• The functions that begin and end critical sections must be functions. For instance, if
you define a function-like macro:

#define init() num_locks++

You cannot use the macro init() to begin or end a critical section.
• When you use multiple critical sections, you can run into issues such as:

• Deadlock: A sequence of calls to lock functions causes two tasks to block each
other.

• Double lock: A lock function is called twice in a task without an intermediate call to
an unlock function.

Use Polyspace Bug Finder to detect such issues. See “Concurrency Defects”
(Polyspace Bug Finder Access).

 Critical section details (-critical-section-begin -critical-section-end)

2-147

Then, use Polyspace Code Prover to detect if your placement of lock and unlock
functions actually protects all shared variables from concurrent access. See “Global
Variables” (Polyspace Code Prover Access).

• When considering possible values of shared variables, a Code Prover verification takes
into account your specifications for critical sections.

However, if the shared variable is a pointer or array, the software uses the
specifications only to determine if the variable is a shared protected global variable.
For run-time error checking, the software does not take your specifications into
account and considers that the variable can be concurrently accessed.

Command-Line Information
Parameter: -critical-section-begin | -critical-section-end
No Default
Value: function1:cs1[,function2:cs2[,...]]
Example (Bug Finder): polyspace-bug_finder -sources file_name -
critical-section-begin func_begin:cs1 -critical-section-end
func_end:cs1
Example (Code Prover): polyspace-code-prover -sources file_name -
critical-section-begin func_begin:cs1 -critical-section-end
func_end:cs1
Example (Bug Finder Server): polyspace-bug_finder-server -sources
file_name -critical-section-begin func_begin:cs1 -critical-section-
end func_end:cs1
Example (Code Prover Server): polyspace-code-prover-server -sources
file_name -critical-section-begin func_begin:cs1 -critical-section-
end func_end:cs1

See Also
-non-preemptable-tasks | -preemptable-interrupts | Cyclic tasks (-
cyclic-tasks) | Interrupts (-interrupts) | Tasks (-entry-points) |
Temporally exclusive tasks (-temporal-exclusions-file)

Topics
“Prepare Scripts for Polyspace Analysis”
“Analyze Multitasking Programs in Polyspace”
“Configuring Polyspace Multitasking Analysis Manually”

2 Option Descriptions

2-148

“Protections for Shared Variables in Multitasking Code”
“Define Atomic Operations in Multitasking Code”
“Define Critical Sections with Functions That Take Arguments”
“Concurrency Defects” (Polyspace Bug Finder Access)
“Global Variables” (Polyspace Code Prover Access)

 Critical section details (-critical-section-begin -critical-section-end)

2-149

Temporally exclusive tasks (-temporal-
exclusions-file)
Specify entry point functions that cannot execute concurrently

Description
Specify entry point functions that cannot execute concurrently. The execution of the
functions cannot overlap with each other.

Set Option
User interface (desktop products only): In your project configuration, the option is
available on the Multitasking node. See “Dependencies” on page 2-151 for other options
you must also enable.

Command line: Use the option -temporal-exclusions-file. See “Command-Line
Information” on page 2-151.

Why Use This Option
Use this option to implement temporal exclusion in multitasking code.

A Code Prover verification checks if specifying certain tasks as temporally exclusive
protects all shared variables from concurrent access. When determining possible values
of those shared variables, the verification accounts for the fact that temporally exclusive
tasks do not interrupt each other. See “Global Variables” (Polyspace Code Prover Access).

A Bug Finder analysis uses the temporal exclusion information to look for concurrency
defects such as data race. See “Concurrency Defects” (Polyspace Bug Finder Access).

Settings
No Default

2 Option Descriptions

2-150

Click to add a field. In each field, enter a space-separated list of functions. Polyspace
considers that the functions in the list cannot execute concurrently.

Enter the function names manually or choose from a list.

•
Click to add a field and enter the function names.

• Click to list functions in your code. Choose functions from the list.

Dependencies
To enable this option in the user interface of the desktop products, first select the option
Configure multitasking manually.

Tips
When considering possible values of shared variables, a Code Prover verification takes
into account your specifications for temporally exclusive tasks.

However, if the shared variable is a pointer or array, the software uses the specifications
only to determine if the variable is a shared protected global variable. For run-time error
checking in Code Prover, the software does not take your specifications into account and
considers that the variable can be concurrently accessed.

Command-Line Information
For the command-line option, create a temporal exclusions file in the following format:

• On each line, enter one group of temporally excluded tasks.
• Within a line, the tasks are separated by spaces.

Parameter: -temporal-exclusions-file
No Default
Value: Name of temporal exclusions file

 Temporally exclusive tasks (-temporal-exclusions-file)

2-151

Example (Bug Finder): polyspace-bug-finder -sources file_name -
temporal-exclusions-file "C:\exclusions_file.txt"
Example (Code Prover): polyspace-code-prover -sources file_name -
temporal-exclusions-file "C:\exclusions_file.txt"
Example (Bug Finder Server): polyspace-bug-finder-server -sources
file_name -temporal-exclusions-file "C:\exclusions_file.txt"
Example (Code Prover Server): polyspace-code-prover-server -sources
file_name -temporal-exclusions-file "C:\exclusions_file.txt"

See Also
-non-preemptable-tasks | -preemptable-interrupts | Critical section
details (-critical-section-begin -critical-section-end) | Cyclic tasks
(-cyclic-tasks) | Interrupts (-interrupts) | Tasks (-entry-points)

Topics
“Prepare Scripts for Polyspace Analysis”
“Analyze Multitasking Programs in Polyspace”
“Configuring Polyspace Multitasking Analysis Manually”
“Protections for Shared Variables in Multitasking Code”
“Define Atomic Operations in Multitasking Code”
“Concurrency Defects” (Polyspace Bug Finder Access)
“Global Variables” (Polyspace Code Prover Access)

2 Option Descriptions

2-152

Set checkers by file (-checkers-selection-
file)
Define a custom set of coding standards checks for your analysis

Description
Specify the full path of a configuration XML file where you define custom selections of
coding standards checkers. You can, in the same file, define a custom selection of
checkers for each of these coding standards:

• MISRA C: 2004
• MISRA C: 2012
• MISRA C++
• JSF AV C++
• AUTOSAR C++14 (Bug Finder only)
• CERT C (Bug Finder only)
• CERT C++ (Bug Finder only)
• ISO/IEC TS 17961 (Bug Finder only)

You can also define custom rules to match identifiers in your code against text patterns
you specify.

Set Option
User interface (desktop products only): In your project configuration, the option is on
the Coding Standards & Code Metrics node.

Command line: Use the option -checkers-selection-file. See “Command-Line
Information” on page 2-157.

When you enable this option, set the coding standards you select to from-file to use
the specified configuration file.

 Set checkers by file (-checkers-selection-file)

2-153

Why Use This Option
Use this option to define a selection of coding standard checkers specific to your
organization. The configuration of different coding standards is consolidated in a single
XML file which you can reuse across projects to enforce common coding standards.

Settings
 On

Polyspace checks your code against the selection of coding standard checkers, or the
custom rules, defined in the configuration file you specify.

To create a configuration file, open the Findings selection window by clicking .
In the left pane, choose the coding standard you want to configure, then select the
rules you want to check for this coding standard in the right pane.

To use or update an existing file, enter the full path to the file in the field provided or
click Browse in the Findings selection window.

2 Option Descriptions

2-154

 Off (default)
Polyspace does not check your code against the selection of coding standard
checkers, or the custom rules, defined in the configuration file you specify.

 Set checkers by file (-checkers-selection-file)

2-155

Tips
• If you use the Polyspace desktop products, specify the coding standard configuration

in the user interface of the desktop products. When you save the configuration, an
XML file is automatically created for use in the current and other projects.

• If you use the Polyspace server products, you have to create the XML file for checker
configuration. Use the file StandardsConfiguration.xml in
polyspaceserverroot\polyspace\examples\cxx\Bug_Finder_Example
\sources as a template and turn on rules using entries in the XML file. Here,
polyspaceserverroot is the root installation folder for the Polyspace Server
products, for instance, C:\Program Files\Polyspace Server\R2019a.

For instance, to turn on MISRA C: 2012 rule 8.1, use this entry:

<standard name="MISRA C:2012">
 ...
 <section name="8 Declarations and definitions">
 ...
 <check id="8.1" state="on">
 </check>
 ...
 </section>
 ...
</standard>

For full list of rule id-s and section names, see:

• “AUTOSAR C++14 Rules” (Polyspace Bug Finder Access)
• “CERT C Rules and Recommendations” (Polyspace Bug Finder Access)
• “CERT C++ Rules” (Polyspace Bug Finder Access)
• “ISO/IEC TS 17961 Rules” (Polyspace Bug Finder Access)
• “Custom Coding Rules” (Polyspace Bug Finder Access)
• “JSF C++ Rules” (Polyspace Bug Finder Access)
• “MISRA C:2004 and MISRA AC AGC Rules” (Polyspace Bug Finder Access)
• “MISRA C:2012 Directives and Rules” (Polyspace Bug Finder Access)
• “MISRA C++:2008 Rules” (Polyspace Bug Finder Access)

2 Option Descriptions

2-156

Command-Line Information
Parameter: -checkers-selection-file
Value: Full path of XML configuration file
Default: Off
Example (Bug Finder): polyspace-bug-finder -sources file_name -
checkers-selection-file "C:\Standards\custom_config.xml" -misra3
from-file
Example (Code Prover): polyspace-code-prover -sources file_name -
checkers-selection-file "C:\Standards\custom_config.xml" -misra3
from-file
Example (Bug Finder Server): polyspace-bug-finder-server -sources
file_name -checkers-selection-file "C:\Standards\custom_config.xml"
-misra3 from-file
Example (Code Prover Server): polyspace-code-prover-server -sources
file_name -checkers-selection-file "C:\Standards\custom_config.xml"
-misra3 from-file

See Also
Do not generate results for (-do-not-generate-results-for)

Topics
“Prepare Scripts for Polyspace Analysis”
“Check for Coding Standard Violations”

 Set checkers by file (-checkers-selection-file)

2-157

Check MISRA C:2004 (-misra2)
Check for violation of MISRA C:2004 rules

Note Polyspace will no longer support custom configuration files in text format in a
future release. See “Compatibility Considerations”.

Description
Specify whether to check for violation of MISRA C:2004 rules. Each value of the option
corresponds to a subset of rules to check.

Set Option
User interface (desktop products only): In your project configuration, the option is on
the Coding Standards & Code Metrics node. See “Dependencies” on page 2-160 for
other options that you must also enable.

Command line: Use the option -misra2. See “Command-Line Information” on page 2-
160.

Why Use This Option
Use this option to specify the subset of MISRA C:2004 rules to check for.

After analysis, the Results List pane lists the coding standard violations. On the Source
pane, for every coding rule violation, Polyspace assigns a symbol to the keyword or
identifier relevant to the violation.

Settings
Default: required-rules

required-rules
Check required coding rules.

2 Option Descriptions

2-158

single-unit-rules
Check a subset of rules that apply only to single translation units. These rules are
checked in the compilation phase of the analysis.

system-decidable-rules
Check rules in the single-unit-rules subset and some rules that apply to the
collective set of program files. The additional rules are the less complex rules that
apply at the integration level. These rules can be checked only at the integration level
because the rules involve more than one translation unit. These rules are checked in
the compilation and linking phases of the analysis.

all-rules
Check required and advisory coding rules.

SQO-subset1
Check only a subset of MISRA C rules. In Polyspace Code Prover, observing these
rules can reduce the number of unproven results. For more information, see
“Software Quality Objective Subsets (C:2004)”.

SQO-subset2
Check a subset of rules including SQO-subset1 and some additional rules. In
Polyspace Code Prover, observing these rules can further reduce the number of
unproven results. For more information, see “Software Quality Objective Subsets
(C:2004)”.

from-file
Specify an XML file where you configure a custom selection of checkers for this

coding standard. To create a configuration file, click , then select the rules
and recommendations you want to check for this coding standard from the right pane
of the Findings selection window. Save the file.

To use or update an existing configuration file, in the Findings selection window,
enter the full path to the file in the field provided or click Browse.

If you set the option to from-file, enable Set checkers by file (-checkers-
selection-file).

 Check MISRA C:2004 (-misra2)

2-159

Dependencies
• This option is available only if you set Source code language (-lang) to C or C-

CPP.

For projects with mixed C and C++ code, the MISRA C:2004 checker analyzes only .c
files.

• If you set Source code language (-lang) to C-CPP, you can activate a C coding
rule checker and a C++ coding rule checker. When you have both C and C++ coding
rule checkers active, to avoid duplicate results, Polyspace does not produce the C
coding rules found in the linking phase (such as MISRA C:2012 Rule 8.3).

Tips
• To reduce unproven results in Polyspace Code Prover:

1 Find coding rule violations in SQO-subset1. Fix your code to address the
violations and rerun verification.

2 Find coding rule violations in SQO-subset2. Fix your code to address the
violations and rerun verification.

• If you select the option single-unit-rules or system-decidable-rules and
choose to detect coding rule violations only, the analysis can complete quicker than
checking other rules. For more information, see “Coding Rule Subsets Checked Early
in Analysis”.

Command-Line Information
Parameter: -misra2
Value: required-rules | all-rules | SQO-subset1 | SQO-subset2 | single-unit-
rules | system-decidable-rules | from-file
Default: required-rules
Example (Bug Finder): polyspace-bug-finder -sources file_name -misra2
all-rules
Example (Code Prover): polyspace-code-prover -sources file_name -misra2
all-rules
Example (Bug Finder Server): polyspace-bug-finder-server -sources
file_name -misra2 all-rules

2 Option Descriptions

2-160

Example (Code Prover Server): polyspace-code-prover-server -sources
file_name -misra2 all-rules

Compatibility Considerations

Polyspace will no longer support text format for coding rules
file
Not recommended starting in R2019a

Starting in R2019a, the file where you define a custom selection of coding standard
checkers uses the XML format. You can save custom selections for all the coding
standards that Polyspace supports in the same file.

In previous releases, you saved your custom selection for each coding standard in
separate text files. Polyspace will stop supporting custom coding standard files in text
format in a future release.

Desktop interface:

If you have a project that contains custom coding standard selection files in text format,
Polyspace automatically updates and consolidates those files into a single XML file. If your
project has conflicting configurations that refer to the same custom selection file, the
software saves the consolidated coding standard selection for each configuration to
separate XML files.

To update your text files to the XML format manually, in the Coding Standards & Code

Metrics node of the Configuration pane, click . In the Findings selection window,
select the files then click Save Changes. Polyspace consolidates the files into a single
XML files, and saves this file as filename.xml, where filename is the name of the first
selected file alphabetically. For instance, if you select foo.conf and bar.conf, they are
saved as bar.conf.xml.

Command-line:

If you do not have access to a Polyspace desktop interface, use the file
StandardsConfiguration.xml as a template to create the XML file where you define a
custom selection of coding standard checkers. This template file is in
polyspaceserverroot\polyspace\examples\cxx\Bug_Finder_Example

 Check MISRA C:2004 (-misra2)

2-161

\sources or polyspaceserverroot\polyspace\examples\cxx
\Code_Prover_Example\sources. Here, polyspaceserverroot is the root
installation folder for the Polyspace products, for instance, C:\Program Files
\Polyspace\R2019a. To update your script, see this table

Option Use Instead
-misra2 "custom_standard.conf" -checkers-selection-file

"custom_standard.conf.xml" -
misra2 from-file

.

Example of Configuration File in XML Format

To turn on MISRA C: 2012 rule 8.1, use this entry:

<standard name="MISRA C:2012">
 ...
 <section name="8 Declarations and definitions">
 ...
 <check id="8.1" state="on">
 </check>
 ...
 </section>
 ...
</standard>

For full list of rule id-s and section names, see:

• “AUTOSAR C++14 Rules” (Polyspace Bug Finder Access)
• “CERT C Rules and Recommendations” (Polyspace Bug Finder Access)
• “ISO/IEC TS 17961 Rules” (Polyspace Bug Finder Access)
• “Custom Coding Rules” (Polyspace Bug Finder Access)
• “JSF C++ Rules” (Polyspace Bug Finder Access)
• “MISRA C:2004 and MISRA AC AGC Rules” (Polyspace Bug Finder Access)
• “MISRA C:2012 Directives and Rules” (Polyspace Bug Finder Access)
• “MISRA C++:2008 Rules” (Polyspace Bug Finder Access)

2 Option Descriptions

2-162

See Also
Do not generate results for (-do-not-generate-results-for)

Topics
“Prepare Scripts for Polyspace Analysis”
“Check for Coding Standard Violations”
“MISRA C:2004 and MISRA AC AGC Rules” (Polyspace Bug Finder Access)

 Check MISRA C:2004 (-misra2)

2-163

Check MISRA AC AGC (-misra-ac-agc)
Check for violation of MISRA AC AGC rules

Note Polyspace will no longer support custom configuration files in text format in a
future release. See “Compatibility Considerations”.

Description
Specify whether to check for violation of rules specified by MISRA AC AGC Guidelines for
the Application of MISRA-C:2004 in the Context of Automatic Code Generation. Each
value of the option corresponds to a subset of rules to check.

Set Option
User interface (desktop products only): In your project configuration, the option is on
the Coding Standards & Code Metrics node. See “Dependencies” on page 2-166 for
other options that you must also enable.

Command line: Use the option -misra-ac-agc. See “Command-Line Information” on
page 2-166.

Why Use This Option
Use this option to specify the subset of MISRA C:2004 AC AGC rules to check for.

After analysis, the Results List pane lists the coding standard violations. On the Source
pane, for every coding rule violation, Polyspace assigns a symbol to the keyword or
identifier relevant to the violation.

Settings
Default: OBL-rules

2 Option Descriptions

2-164

OBL-rules
Check required coding rules.

OBL-REC-rules
Check required and recommended rules.

single-unit-rules
Check a subset of rules that apply only to single translation units. These rules are
checked in the compilation phase of the analysis.

system-decidable-rules
Check rules in the single-unit-rules subset and some rules that apply to the
collective set of program files. The additional rules are the less complex rules that
apply at the integration level. These rules can be checked only at the integration level
because the rules involve more than one translation unit. These rules are checked in
the compilation and linking phases of the analysis.

all-rules
Check required, recommended and readability-related rules.

SQO-subset1
Check a subset of rules. In Polyspace Code Prover, observing these rules can reduce
the number of unproven results. For more information, see “Software Quality
Objective Subsets (AC AGC)”.

SQO-subset2
Check a subset of rules including SQO-subset1 and some additional rules. In
Polyspace Code Prover, observing these rules can further reduce the number of
unproven results. For more information, see “Software Quality Objective Subsets (AC
AGC)”.

from-file
Specify an XML file where you configure a custom selection of checkers for this

coding standard. To create a configuration file, click , then select the rules
and recommendations you want to check for this coding standard from the right pane
of the Findings selection window. Save the file.

To use or update an existing configuration file, in the Findings selection window,
enter the full path to the file in the field provided or click Browse.

If you set the option to from-file, enable Set checkers by file (-checkers-
selection-file).

 Check MISRA AC AGC (-misra-ac-agc)

2-165

Dependencies
• This option is available only if you set Source code language (-lang) to C or C-

CPP.

For projects with mixed C and C++ code, the MISRA AC AGC checker analyzes
only .c files.

• If you set Source code language (-lang) to C-CPP, you can activate a C coding
rule checker and a C++ coding rule checker. When you have both C and C++ coding
rule checkers active, to avoid duplicate results, Polyspace does not produce the C
coding rules found in the linking phase (such as MISRA C:2012 Rule 8.3).

Tips
• To reduce unproven results in Polyspace Code Prover:

1 Find coding rule violations in SQO-subset1. Fix your code to address the
violations and rerun verification.

2 Find coding rule violations in SQO-subset2. Fix your code to address the
violations and rerun verification.

• If you select the option single-unit-rules or system-decidable-rules and
choose to detect coding rule violations only, the analysis can complete quicker than
checking other rules. For more information, see “Coding Rule Subsets Checked Early
in Analysis”.

Command-Line Information
Parameter: -misra-ac-agc
Value: OBL-rules | OBL-REC-rules | single-unit-rules | system-decidable-
rules | all-rules | SQO-subset1 | SQO-subset2 | from-file
Default: OBL-rules
Example (Bug Finder): polyspace-bug-finder -sources file_name -misra-
ac-agc all-rules
Example (Code Prover): polyspace-code-prover -sources file_name -misra-
ac-agc all-rules
Example (Bug Finder Server): polyspace-bug-finder-server -sources
file_name -misra-ac-agc all-rules

2 Option Descriptions

2-166

Example (Code Prover Server): polyspace-code-prover-server -sources
file_name -misra-ac-agc all-rules

Compatibility Considerations

Polyspace will no longer support text format for coding rules
file
Not recommended starting in R2019a

Starting in R2019a, the file where you define a custom selection of coding standard
checkers uses the XML format. You can save custom selections for all the coding
standards that Polyspace supports in the same file.

In previous releases, you saved your custom selection for each coding standard in
separate text files. Polyspace will stop supporting custom coding standard files in text
format in a future release.

Desktop interface:

If you have a project that contains custom coding standard selection files in text format,
Polyspace automatically updates and consolidates those files into a single XML file. If your
project has conflicting configurations that refer to the same custom selection file, the
software saves the consolidated coding standard selection for each configuration to
separate XML files.

To update your text files to the XML format manually, in the Coding Standards & Code

Metrics node of the Configuration pane, click . In the Findings selection window,
select the files then click Save Changes. Polyspace consolidates the files into a single
XML files, and saves this file as filename.xml, where filename is the name of the first
selected file alphabetically. For instance, if you select foo.conf and bar.conf, they are
saved as bar.conf.xml.

Command-line:

If you do not have access to a Polyspace desktop interface, use the file
StandardsConfiguration.xml as a template to create the XML file where you define a
custom selection of coding standard checkers. This template file is in
polyspaceserverroot\polyspace\examples\cxx\Bug_Finder_Example

 Check MISRA AC AGC (-misra-ac-agc)

2-167

\sources or polyspaceserverroot\polyspace\examples\cxx
\Code_Prover_Example\sources. Here, polyspaceserverroot is the root
installation folder for the Polyspace products, for instance, C:\Program Files
\Polyspace\R2019a. To update your script, see this table

Option Use Instead
-misra-ac-agc
"custom_standard.conf"

-checkers-selection-file
"custom_standard.conf.xml" -
misra-ac-agc from-file

.

Example of Configuration File in XML Format

To turn on MISRA C: 2012 rule 8.1, use this entry:

<standard name="MISRA C:2012">
 ...
 <section name="8 Declarations and definitions">
 ...
 <check id="8.1" state="on">
 </check>
 ...
 </section>
 ...
</standard>

For full list of rule id-s and section names, see:

• “AUTOSAR C++14 Rules” (Polyspace Bug Finder Access)
• “CERT C Rules and Recommendations” (Polyspace Bug Finder Access)
• “ISO/IEC TS 17961 Rules” (Polyspace Bug Finder Access)
• “Custom Coding Rules” (Polyspace Bug Finder Access)
• “JSF C++ Rules” (Polyspace Bug Finder Access)
• “MISRA C:2004 and MISRA AC AGC Rules” (Polyspace Bug Finder Access)
• “MISRA C:2012 Directives and Rules” (Polyspace Bug Finder Access)
• “MISRA C++:2008 Rules” (Polyspace Bug Finder Access)

2 Option Descriptions

2-168

See Also
Do not generate results for (-do-not-generate-results-for)

Topics
“Prepare Scripts for Polyspace Analysis”
“Check for Coding Standard Violations”
“MISRA C:2004 and MISRA AC AGC Rules” (Polyspace Bug Finder Access)

 Check MISRA AC AGC (-misra-ac-agc)

2-169

Check MISRA C:2012 (-misra3)
Check for violations of MISRA C:2012 rules and directives

Note Polyspace will no longer support custom configuration files in text format in a
future release. See “Compatibility Considerations”.

Description
Specify whether to check for violations of MISRA C:2012 guidelines. Each value of the
option corresponds to a subset of guidelines to check.

Set Option
User interface (desktop products only): In your project configuration, the option is on
the Coding Standards & Code Metrics node. See “Dependencies” on page 2-172 for
other options that you must also enable.

Command line: Use the option -misra3. See “Command-Line Information” on page 2-
173.

Why Use This Option
Use this option to specify the subset of MISRA C:2012 rules to check for.

After analysis, the Results List pane lists the coding standard violations. On the Source
pane, for every coding rule violation, Polyspace assigns a symbol to the keyword or
identifier relevant to the violation.

Settings
Default: mandatory-required

mandatory
Check for mandatory guidelines.

2 Option Descriptions

2-170

mandatory-required
Check for mandatory and required guidelines.

• Mandatory guidelines: Your code must comply with these guidelines.
• Required guidelines: You may deviate from these guidelines. However, you must

complete a formal deviation record, and your deviation must be authorized.

See Section 5.4 of the MISRA C:2012 guidelines. For an example of a deviation
record, see Appendix I of the MISRA C:2012 guidelines.

Note To turn off some required guidelines, instead of mandatory-required select

custom. To clear specific guidelines, click . In the Comment column, enter
your rationale for disabling a guideline. For instance, you can enter the Deviation ID
that refers to a deviation record for the guideline. The rationale appears in your
generated report.

single-unit-rules
Check a subset of rules that apply only to single translation units. These rules are
checked in the compilation phase of the analysis.

system-decidable-rules
Check rules in the single-unit-rules subset and some rules that apply to the
collective set of program files. The additional rules are the less complex rules that
apply at the integration level. These rules can be checked only at the integration level
because the rules involve more than one translation unit. These rules are checked in
the compilation and linking phases of the analysis.

all
Check for mandatory, required, and advisory guidelines.

SQO-subset1
Check for only a subset of guidelines. In Polyspace Code Prover, observing these rules
can reduce the number of unproven results. For more information, see “Software
Quality Objective Subsets (C:2012)”.

SQO-subset2
Check for the subset SQO-subset1, plus some additional rules. In Polyspace Code
Prover, observing these rules can further reduce the number of unproven results. For
more information, see “Software Quality Objective Subsets (C:2012)”.

 Check MISRA C:2012 (-misra3)

2-171

from-file
Specify an XML file where you configure a custom selection of checkers for this

coding standard. To create a configuration file, click , then select the rules
and recommendations you want to check for this coding standard from the right pane
of the Findings selection window. Save the file.

To use or update an existing configuration file, in the Findings selection window,
enter the full path to the file in the field provided or click Browse.

If you set the option to from-file, enable Set checkers by file (-checkers-
selection-file).

Dependencies
• This option is available only if you set Source code language (-lang) to C or C-

CPP.

For projects with mixed C and C++ code, the MISRA C:2012 checker analyzes only .c
files.

• If you set Source code language (-lang) to C-CPP, you can activate a C coding
rule checker and a C++ coding rule checker. When you have both C and C++ coding
rule checkers active, to avoid duplicate results, Polyspace does not produce the C
coding rules found in the linking phase (such as MISRA C:2012 Rule 8.3).

Tips
• To reduce unproven results in Polyspace Code Prover:

1 Find coding rule violations in SQO-subset1. Fix your code to address the
violations and rerun verification.

2 Find coding rule violations in SQO-subset2. Fix your code to address the
violations and rerun verification.

• If you select the option single-unit-rules or system-decidable-rules and
choose to detect coding rule violations only, the analysis can complete quicker than
checking other rules. For more information, see “Coding Rule Subsets Checked Early
in Analysis”.

2 Option Descriptions

2-172

• Polyspace Code Prover does not support checking of the following:

• MISRA C:2012 Directive 4.13 and 4.14
• MISRA C:2012 Rule 21.13, 21.14, and 21.17 - 21.20
• MISRA C:2012 Rule 22.1 - 22.4 and 22.6 - 22.10

For support of all MISRA C: 2012 rules including the security guidelines in
Amendment 1, use Polyspace Bug Finder.

Command-Line Information
Parameter: -misra3
Value: mandatory | mandatory-required | single-unit-rules | system-
decidable-rules | all | SQO-subset1 | SQO-subset2 | from-file
Default: mandatory-required
Example (Bug Finder): polyspace-bug-finder -lang c -sources file_name -
misra3 mandatory-required
Example (Code Prover): polyspace-code-prover -lang c -sources file_name
-misra3 mandatory-required
Example (Bug Finder Server): polyspace-bug-finder-server -lang c -
sources file_name -misra3 mandatory-required
Example (Code Prover Server): polyspace-code-prover-server -lang c -
sources file_name -misra3 mandatory-required

Compatibility Considerations

Polyspace will no longer support text format for coding rules
file
Not recommended starting in R2019a

Starting in R2019a, the file where you define a custom selection of coding standard
checkers uses the XML format. You can save custom selections for all the coding
standards that Polyspace supports in the same file.

In previous releases, you saved your custom selection for each coding standard in
separate text files. Polyspace will stop supporting custom coding standard files in text
format in a future release.

 Check MISRA C:2012 (-misra3)

2-173

Desktop interface:

If you have a project that contains custom coding standard selection files in text format,
Polyspace automatically updates and consolidates those files into a single XML file. If your
project has conflicting configurations that refer to the same custom selection file, the
software saves the consolidated coding standard selection for each configuration to
separate XML files.

To update your text files to the XML format manually, in the Coding Standards & Code

Metrics node of the Configuration pane, click . In the Findings selection window,
select the files then click Save Changes. Polyspace consolidates the files into a single
XML files, and saves this file as filename.xml, where filename is the name of the first
selected file alphabetically. For instance, if you select foo.conf and bar.conf, they are
saved as bar.conf.xml.

Command-line:

If you do not have access to a Polyspace desktop interface, use the file
StandardsConfiguration.xml as a template to create the XML file where you define a
custom selection of coding standard checkers. This template file is in
polyspaceserverroot\polyspace\examples\cxx\Bug_Finder_Example
\sources or polyspaceserverroot\polyspace\examples\cxx
\Code_Prover_Example\sources. Here, polyspaceserverroot is the root
installation folder for the Polyspace products, for instance, C:\Program Files
\Polyspace\R2019a. To update your script, see this table

Option Use Instead
-misra3 "custom_standard.conf" -checkers-selection-file

"custom_standard.conf.xml" -
misra3 from-file

.

Example of Configuration File in XML Format

To turn on MISRA C: 2012 rule 8.1, use this entry:

2 Option Descriptions

2-174

<standard name="MISRA C:2012">
 ...
 <section name="8 Declarations and definitions">
 ...
 <check id="8.1" state="on">
 </check>
 ...
 </section>
 ...
</standard>

For full list of rule id-s and section names, see:

• “AUTOSAR C++14 Rules” (Polyspace Bug Finder Access)
• “CERT C Rules and Recommendations” (Polyspace Bug Finder Access)
• “ISO/IEC TS 17961 Rules” (Polyspace Bug Finder Access)
• “Custom Coding Rules” (Polyspace Bug Finder Access)
• “JSF C++ Rules” (Polyspace Bug Finder Access)
• “MISRA C:2004 and MISRA AC AGC Rules” (Polyspace Bug Finder Access)
• “MISRA C:2012 Directives and Rules” (Polyspace Bug Finder Access)
• “MISRA C++:2008 Rules” (Polyspace Bug Finder Access)

See Also
Do not generate results for (-do-not-generate-results-for)

Topics
“Prepare Scripts for Polyspace Analysis”
“Check for Coding Standard Violations”
“MISRA C:2012 Directives and Rules” (Polyspace Bug Finder Access)

 Check MISRA C:2012 (-misra3)

2-175

Use generated code requirements (-misra3-
agc-mode)
Check for violations of MISRA C:2012 rules and directives that apply to generated code

Description
Specify whether to use the MISRA C:2012 categories for automatically generated code.
This option changes which rules are mandatory, required, or advisory.

Set Option
User interface (desktop products only): In your project configuration, the option is on
the Coding Standards & Code Metrics node. See “Dependency” on page 2-177 for
other options that you must also enable.

Command line: Use the option -misra3-agc-mode. See “Command-Line Information”
on page 2-178.

Why Use This Option
Use this option to specify that you are checking for MISRA C:2012 rules in generated
code. The option modifies the MISRA C:2012 subsets so that they are tailored for
generated code.

Settings
 Off (default)

Use the normal categories (mandatory, required, advisory) for MISRA C:2012 coding
guideline checking.

 On (default for analyses from Simulink)
Use the generated code categories (mandatory, required, advisory, readability) for
MISRA C:2012 coding guideline checking.

2 Option Descriptions

2-176

For analyses started from the Simulink plug-in, this option is the default value.

Category changed to Advisory

These rules are changed to advisory:

• 5.3
• 7.1
• 8.4, 8.5, 8.14
• 10.1, 10.2, 10.3, 10.4, 10.6, 10.7, 10.8
• 14.1, 14.4
• 15.2, 15.3
• 16.1, 16.2, 16.3, 16.4, 16.5, 16.6, 16.7
• 20.8

Category changed to Readability

These guidelines are changed to readability:

• Dir 4.5
• 2.3, 2.4, 2.5, 2.6, 2.7
• 5.9
• 7.2, 7.3
• 9.2, 9.3, 9.5
• 11.9
• 13.3
• 14.2
• 15.7
• 17.5, 17.7, 17.8
• 18.5
• 20.5

Dependency
To use this option, first select the Check MISRA C:2012 (-misra3) option.

 Use generated code requirements (-misra3-agc-mode)

2-177

Command-Line Information
Parameter: -misra3-agc-mode
Default: Off
Example (Bug Finder): polyspace-bug-finder -sources file_name -misra3
all -misra3-agc-mode
Example (Code Prover): polyspace-code-prover -sources file_name -misra3
all -misra3-agc-mode
Example (Bug Finder Server): polyspace-bug-finder-server -sources
file_name -misra3 all -misra3-agc-mode
Example (Code Prover Server): polyspace-code-prover-server -sources
file_name -misra3 all -misra3-agc-mode

See Also
Check MISRA C:2012 (-misra3) | Do not generate results for (-do-not-
generate-results-for)

Topics
“Prepare Scripts for Polyspace Analysis”
“Check for Coding Standard Violations”
“MISRA C:2012 Directives and Rules” (Polyspace Bug Finder Access)

2 Option Descriptions

2-178

Effective boolean types (-boolean-types)
Specify data types that coding rule checker must treat as effectively Boolean

Description
Specify data types that the coding rule checker must treat as effectively Boolean. You can
specify a data type only if you have defined it through a typedef statement in your
source code.

Set Option
User interface (desktop products only): In your project configuration, the option is on
the Coding Standards & Code Metrics node. See “Dependencies” on page 2-180 for
other options that you must also enable.

Command line: Use the option -boolean-types. See “Command-Line Information” on
page 2-181.

Why Use This Option
Use this option to allow Polyspace to check the following coding rules:

• MISRA C: 2004 and MISRA AC AGC

Rule
Number

Rule Statement

12.6 Operands of logical operators, &&, ||, and !, should be effectively
Boolean. Expressions that are effectively Boolean should not be used as
operands to other operators.

13.2 Tests of a value against zero should be made explicit, unless the
operand is effectively Boolean.

15.4 A switch expression should not represent a value that is effectively
Boolean.

• MISRA C: 2012

 Effective boolean types (-boolean-types)

2-179

Rule
Number

Rule Statement

10.1 Operands shall not be of an inappropriate essential type
10.3 The value of an expression shall not be assigned to an object with a

narrower essential type or of a different essential type category
10.5 The value of an expression should not be cast to an inappropriate

essential type
14.4 The controlling expression of an if statement and the controlling

expression of an iteration-statement shall have essentially Boolean
type.

16.7 A switch-expression shall not have essentially Boolean type.

For example, in the following code, unless you specify myBool as effectively Boolean,
Polyspace detects a violation of MISRA C: 2012 rule 14.4.

typedef int myBool;

void func1(void);
void func2(void);

void func(myBool flag) {
 if(flag)
 func1();
 else
 func2();
}

Settings
No Default

Click to add a field. Enter a type name that you want Polyspace to treat as Boolean.

Dependencies
This option is enabled only if you select one of these options:

2 Option Descriptions

2-180

• Check MISRA C:2004 (-misra2)
• Check MISRA AC AGC (-misra-ac-agc).
• Check MISRA C:2012 (-misra3)

Command-Line Information
Parameter: -boolean-types
Value: type1[,type2[,...]]
No Default
Example (Bug Finder): polyspace-bug-finder -sources filename -misra2
required-rules -boolean-types boolean1_t,boolean2_t
Example (Code Prover): polyspace-code-prover -sources filename -misra2
required-rules -boolean-types boolean1_t,boolean2_t
Example (Bug Finder Server): polyspace-bug-finder-server -sources
filename -misra2 required-rules -boolean-types boolean1_t,boolean2_t
Example (Code Prover Server): polyspace-code-prover-server -sources
filename -misra2 required-rules -boolean-types boolean1_t,boolean2_t

See Also
Check MISRA AC AGC (-misra-ac-agc) | Check MISRA C:2004 (-misra2) |
Check MISRA C:2012 (-misra3)

Topics
“Prepare Scripts for Polyspace Analysis”
“Check for Coding Standard Violations”
“MISRA C:2004 and MISRA AC AGC Rules” (Polyspace Bug Finder Access)
“MISRA C:2012 Directives and Rules” (Polyspace Bug Finder Access)

 Effective boolean types (-boolean-types)

2-181

Allowed pragmas (-allowed-pragmas)
Specify pragma directives that are documented

Description
Specify pragma directives that must not be flagged by MISRA C:2004 rule 3.4 or MISRA
C++ rule 16-6-1. These rules require that you document all pragma directives.

Set Option
User interface (desktop products only): In your project configuration, the option is on
the Coding Standards & Code Metrics node. See “Dependencies” on page 2-183 for
other options that you must also enable.

Command line: Use the option -allowed-pragmas. See “Command-Line Information”
on page 2-183.

Why Use This Option
MISRA C:2004/MISRA AC AGC rule 3.4 and MISRA C++ rule 16-6-1 require that all
pragma directives are documented within the documentation of the compiler. If you list a
pragma as documented using this analysis option, Polyspace does not flag use of the
pragma as a violation of these rules.

Settings
No Default

Click to add a field. Enter the pragma name that you want Polyspace to ignore during
coding rule checking .

2 Option Descriptions

2-182

Dependencies
This option is enabled only if you select one of these options:

• Check MISRA C:2004 (-misra2)
• Check MISRA AC AGC (-misra-ac-agc).
• Check MISRA C++:2008 (-misra-cpp)

Command-Line Information
Parameter: -allowed-pragmas
Value: pragma1[,pragma2[,...]]
No Default
Example (Bug Finder): polyspace-bug-finder -sources filename -misra-cpp
required-rules -allowed-pragmas pragma_01,pragma_02
Example (Code Prover): polyspace-code-prover -sources filename -misra-
cpp required-rules -allowed-pragmas pragma_01,pragma_02
Example (Bug Finder Server): polyspace-bug-finder-server -sources
filename -misra-cpp required-rules -allowed-pragmas
pragma_01,pragma_02
Example (Code Prover Server): polyspace-code-prover-server -sources
filename -misra-cpp required-rules -allowed-pragmas
pragma_01,pragma_02

See Also
Check MISRA AC AGC (-misra-ac-agc) | Check MISRA C++:2008 (-misra-cpp)
| Check MISRA C:2004 (-misra2)

Topics
“Prepare Scripts for Polyspace Analysis”
“Check for Coding Standard Violations”
“MISRA C:2004 and MISRA AC AGC Rules” (Polyspace Bug Finder Access)
“MISRA C++:2008 Rules” (Polyspace Bug Finder Access)

 Allowed pragmas (-allowed-pragmas)

2-183

Check custom rules (-custom-rules)
Follow naming conventions for identifiers

Note Polyspace will no longer support custom configuration files in text format in a
future release. See “Compatibility Considerations”.

Description
Define naming conventions for identifiers and check your code against them.

Set Option
User interface (desktop products only): In your project configuration, the option is on
the Coding Standards & Code Metrics node.

Command line: Use the option -custom-rules. See “Command-Line Information” on
page 2-187.

Why Use This Option
Use this option to impose naming conventions on identifiers. Using a naming convention
allows you to easily determine the nature of an identifier from its name. For instance, if
you define a naming convention for structures, you can easily tell whether an identifier
represents a structured variable or not.

After analysis, the Results List pane lists violations of the naming conventions. On the
Source pane, for every violation, Polyspace assigns a symbol to the keyword or
identifier relevant to the violation.

Settings
 On

Polyspace matches identifiers in your code against text patterns you define. Define
the text patterns in a custom coding rules file. To create a coding rules file,

2 Option Descriptions

2-184

• Use the custom rules wizard:

1
Click . A Findings selection window opens.

2 The Custom node in the left pane is highlighted. Expand the nodes in the
right pane to select custom rule you want to check.

3 For every custom rule you want to check:

a Select On .
b In the Convention column, enter the error message you want to display if

the rule is violated.

For example, for rule 4.3, All struct fields must follow the specified
pattern, you can enter All struct fields must begin with s_.
This message appears on the Result Details pane if:

• You specify the Pattern as s_[A-Za-z0-9_]+.
• A structure field in your code does not begin with s_.

c In the Pattern column, enter the text pattern.

For example, for rule 4.3, All struct fields must follow the specified
pattern, you can enter s_[A-Za-z0-9_]+. Polyspace reports violation of
rule 4.3 if a structure field does not begin with s_.

You can use Perl regular expressions to define patterns. For instance, you
can use the following expressions.

Expression Meaning
. Matches any single character except

newline
[a-
z0-9]

Matches any single letter in the set a-z,
or digit in the set 0-9

[^a-e] Matches any single letter not in the set
a-e

\d Matches any single digit
\w Matches any single alphanumeric

character or _

 Check custom rules (-custom-rules)

2-185

Expression Meaning
x? Matches 0 or 1 occurrence of x
x* Matches 0 or more occurrences of x
x+ Matches 1 or more occurrences of x

For frequent patterns, you can use the following regular expressions:

• (?!__)[a-z0-9_]+(?!__), matches a text pattern that does not
start and end with two underscores.

int __text; //Does not match
int _text_; //Matches

• [a-z0-9_]+_(u8|u16|u32|s8|s16|s32) , matches a text pattern
that ends with a specific suffix.

int _text_; //Does not match
int _text_s16; //Matches
int _text_s33; // Does not match

• [a-z0-9_]+_(u8|u16|u32|s8|s16|s32)(_b3|_b8)? , matches a
text pattern that ends with a specific suffix and an optional second
suffix.

int _text_s16; //Matches
int _text_s16_b8; //Matches

For a complete list of regular expressions, see Perl documentation.

To use or update an existing coding rules file, click to open the Findings
selection window then do one of the following:

• Enter the full path to the file in the field provided
• Click Browse and navigate to the file location.

 Off (default)
Polyspace does not check your code against custom naming conventions.

2 Option Descriptions

2-186

https://perldoc.perl.org/perlre.html#Regular-Expressions

Command-Line Information
Parameter: -custom-rules
Value: Name of coding rules file
Default: Off
Example (Bug Finder): polyspace-bug-finder -sources file_name -custom-
rules "C:\Standards\custom_config.xml"
Example (Code Prover): polyspace-code-prover -sources file_name -
custom-rules "C:\Standards\custom_config.xml"
Example (Bug Finder Server): polyspace-bug-finder-server -sources
file_name -custom-rules "C:\Standards\custom_config.xml"
Example (Code Prover Server): polyspace-code-prover-server -sources
file_name -custom-rules "C:\Standards\custom_config.xml"

Compatibility Considerations

Polyspace will no longer support text format for coding rules
file
Not recommended starting in R2019a

Starting in R2019a, the file where you define custom coding rules uses the XML format.
You can save selections for custom coding rules and all the coding standards that
Polyspace supports in the same file.

In previous releases, you saved your selection for each coding standard and custom
coding rules in separate text files. Polyspace will stop supporting custom coding rule files
in text format in a future release.

Desktop user interface:

If you have a project that contains custom coding rules and coding standard selection files
in text format, Polyspace automatically updates and consolidates those files into a single
XML file. If your project has conflicting configurations that refer to the same custom
selection file, the software saves the consolidated coding standard selection for each
configuration to separate XML files.

To update your text files to the XML format manually, in the Coding Standards & Code

Metrics node of the Configuration pane, click . In the Findings selection window,

 Check custom rules (-custom-rules)

2-187

select the files then click Save Changes. Polyspace consolidates the files into a single
XML files, and saves this file as filename.xml, where filename is the name of the first
selected file alphabetically. For instance, if you select foo.conf and bar.conf, they are
saved as bar.conf.xml.

Command-line:

If you do not have access to a Polyspace desktop interface, use the file
StandardsConfiguration.xml as a template to create the XML file where you define a
custom selection of coding standard checkers. This template file is in polyspaceroot
\polyspace\examples\cxx\Bug_Finder_Example\sources or polyspaceroot
\polyspace\examples\cxx\Code_Prover_Example\sources. Here,
polyspaceroot is the root installation folder for the Polyspace products, for instance,
C:\Program Files\Polyspace\R2019a. To update your script, replace reference to
the old file format with the new XML file format .

Example of Configuration File in XML Format

To turn on and define custom coding rule 8.1, use this entry:

<standard name="CUSTOM RULES">
 ...
 <section name="8 Constants">
 ...
 <check id="8.1" state="on">
 <convention>Constant name must begin with C_</convention>
 <pattern>C_[A-Z0-9_]*</pattern>
 <comment># Issue when constant name does not begin with c_</comment>
 </check>
 ...
 </section>
 ...
</standard>

For full list of rule id-s and section names, see:

• “AUTOSAR C++14 Rules” (Polyspace Bug Finder Access)
• “CERT C Rules and Recommendations” (Polyspace Bug Finder Access)
• “ISO/IEC TS 17961 Rules” (Polyspace Bug Finder Access)
• “Custom Coding Rules” (Polyspace Bug Finder Access)
• “JSF C++ Rules” (Polyspace Bug Finder Access)

2 Option Descriptions

2-188

• “MISRA C:2004 and MISRA AC AGC Rules” (Polyspace Bug Finder Access)
• “MISRA C:2012 Directives and Rules” (Polyspace Bug Finder Access)
• “MISRA C++:2008 Rules” (Polyspace Bug Finder Access)

See Also

Topics
“Prepare Scripts for Polyspace Analysis”
“Check for Coding Standard Violations”
“Create Custom Coding Rules”

 Check custom rules (-custom-rules)

2-189

Check MISRA C++:2008 (-misra-cpp)
Check for violations of MISRA C++ rules

Note Polyspace will no longer support custom configuration files in text format in a
future release. See “Compatibility Considerations”.

Description
Specify whether to check for violation of MISRA C++ rules. Each value of the option
corresponds to a subset of rules to check.

Set Option
User interface (desktop products only): In your project configuration, the option is on
the Coding Standards & Code Metrics node. See “Dependency” on page 2-191 for
other options that you must also enable.

Command line: Use the option -misra-cpp. See “Command-Line Information” on page
2-191.

Why Use This Option
Use this option to specify the subset of MISRA C++ rules to check for.

After analysis, the Results List pane lists the coding standard violations. On the Source
pane, for every coding rule violation, Polyspace assigns a symbol to the keyword or
identifier relevant to the violation.

Settings
Default: required-rules

required-rules
Check required coding rules.

2 Option Descriptions

2-190

all-rules
Check required and advisory coding rules.

SQO-subset1
Check only a subset of MISRA C++ rules. In Polyspace Code Prover, observing these
rules can reduce the number of unproven results. For more information, see
“Software Quality Objective Subsets (C++)”.

SQO-subset2
Check a subset of rules including SQO-subset1 and some additional rules. In
Polyspace Code Prover, observing these rules can further reduce the number of
unproven results. For more information, see “Software Quality Objective Subsets (C+
+)”

from-file
Specify an XML file where you configure a custom selection of checkers for this

coding standard. To create a configuration file, click , then select the rules
and recommendations you want to check for this coding standard from the right pane
of the Findings selection window. Save the file.

To use or update an existing configuration file, in the Findings selection window,
enter the full path to the file in the field provided or click Browse.

If you set the option to from-file, enable Set checkers by file (-checkers-
selection-file).

Dependency
This option is available only if you set Source code language (-lang) to CPP or C-
CPP.

For projects with mixed C and C++ code, the MISRA C++ checker analyzes only .cpp
files.

Command-Line Information
Parameter: -misra-cpp
Value: required-rules | all-rules | SQO-subset1 | SQO-subset2 | from-file

 Check MISRA C++:2008 (-misra-cpp)

2-191

Default: required-rules
Example (Bug Finder): polyspace-bug-finder -sources file_name -misra-
cpp all-rules
Example (Code Prover): polyspace-code-prover -sources file_name -misra-
cpp all-rules
Example (Bug Finder Server): polyspace-bug-finder-server -sources
file_name -misra-cpp all-rules
Example (Code Prover Server): polyspace-code-prover-server -sources
file_name -misra-cpp all-rules

Compatibility Considerations

Polyspace will no longer support text format for coding rules
file
Not recommended starting in R2019a

Starting in R2019a, the file where you define a custom selection of coding standard
checkers uses the XML format. You can save custom selections for all the coding
standards that Polyspace supports in the same file.

In previous releases, you saved your custom selection for each coding standard in
separate text files. Polyspace will stop supporting custom coding standard files in text
format in a future release.

Desktop interface:

If you have a project that contains custom coding standard selection files in text format,
Polyspace automatically updates and consolidates those files into a single XML file. If your
project has conflicting configurations that refer to the same custom selection file, the
software saves the consolidated coding standard selection for each configuration to
separate XML files.

To update your text files to the XML format manually, in the Coding Standards & Code

Metrics node of the Configuration pane, click . In the Findings selection window,
select the files then click Save Changes. Polyspace consolidates the files into a single
XML files, and saves this file as filename.xml, where filename is the name of the first
selected file alphabetically. For instance, if you select foo.conf and bar.conf, they are
saved as bar.conf.xml.

2 Option Descriptions

2-192

Command-line:

If you do not have access to a Polyspace desktop interface, use the file
StandardsConfiguration.xml as a template to create the XML file where you define a
custom selection of coding standard checkers. This template file is in
polyspaceserverroot\polyspace\examples\cxx\Bug_Finder_Example
\sources or polyspaceserverroot\polyspace\examples\cxx
\Code_Prover_Example\sources. Here, polyspaceserverroot is the root
installation folder for the Polyspace products, for instance, C:\Program Files
\Polyspace\R2019a. To update your script, see this table

Option Use Instead
-misra-cpp "custom_standard.conf" -checkers-selection-file

"custom_standard.conf.xml" -
misra-cpp from-file

.

Example of Configuration File in XML Format

To turn on MISRA C: 2012 rule 8.1, use this entry:

<standard name="MISRA C:2012">
 ...
 <section name="8 Declarations and definitions">
 ...
 <check id="8.1" state="on">
 </check>
 ...
 </section>
 ...
</standard>

For full list of rule id-s and section names, see:

• “AUTOSAR C++14 Rules” (Polyspace Bug Finder Access)
• “CERT C Rules and Recommendations” (Polyspace Bug Finder Access)
• “ISO/IEC TS 17961 Rules” (Polyspace Bug Finder Access)
• “Custom Coding Rules” (Polyspace Bug Finder Access)
• “JSF C++ Rules” (Polyspace Bug Finder Access)

 Check MISRA C++:2008 (-misra-cpp)

2-193

• “MISRA C:2004 and MISRA AC AGC Rules” (Polyspace Bug Finder Access)
• “MISRA C:2012 Directives and Rules” (Polyspace Bug Finder Access)
• “MISRA C++:2008 Rules” (Polyspace Bug Finder Access)

See Also
Do not generate results for (-do-not-generate-results-for)

Topics
“Prepare Scripts for Polyspace Analysis”
“Check for Coding Standard Violations”
“MISRA C++:2008 Rules” (Polyspace Bug Finder Access)

2 Option Descriptions

2-194

Check JSF AV C++ rules (-jsf-coding-
rules)
Check for violations of JSF C++ rules

Note Polyspace will no longer support custom configuration files in text format in a
future release. See “Compatibility Considerations”.

Description
Specify whether to check for violation of JSF AV C++ rules (JSF++:2005). Each value of
the option corresponds to a subset of rules to check.

Set Option
User interface (desktop products only): In your project configuration, the option is on
the Coding Standards & Code Metrics node. See “Dependency” on page 2-196 for
other options that you must also enable.

Command line: Use the option -jsf-coding-rules. See “Command-Line Information”
on page 2-197.

Why Use This Option
Use this option to specify the subset of JSF C++ rules to check for.

After analysis, the Results List pane lists the coding standard violations. On the Source
pane, for every coding rule violation, Polyspace assigns a symbol to the keyword or
identifier relevant to the violation.

Settings
Default: shall-rules

 Check JSF AV C++ rules (-jsf-coding-rules)

2-195

shall-rules
Check all Shall rules. Shall rules are mandatory requirements and require
verification.

shall-will-rules
Check all Shall and Will rules. Will rules are intended to be mandatory requirements
but do not require verification.

all-rules
Check all Shall, Will, and Should rules. Should rules are advisory rules.

from-file
Specify an XML file where you configure a custom selection of checkers for this

coding standard. To create a configuration file, click , then select the rules
and recommendations you want to check for this coding standard from the right pane
of the Findings selection window. Save the file.

To use or update an existing configuration file, in the Findings selection window,
enter the full path to the file in the field provided or click Browse.

If you set the option to from-file, enable Set checkers by file (-checkers-
selection-file).

Tips
• If your project uses a setting other than generic for Compiler (-compiler), some

rules might not be completely checked. For example, AV Rule 8: “All code shall
conform to ISO/IEC 14882:2002(E) standard C++.”

Dependency
This option is available only if you set Source code language (-lang) to CPP or C-
CPP.

For projects with mixed C and C++ code, the JSF C++ checker analyzes only .cpp files.

2 Option Descriptions

2-196

Command-Line Information
Parameter: -jsf-coding-rules
Value: shall-rules | shall-will-rules | all-rules | from-file
Default: shall-rules
Example (Bug Finder): polyspace-bug-finder -sources file_name -jsf-
coding-rules all-rules
Example (Code Prover): polyspace-code-prover -sources file_name -jsf-
coding-rules all-rules
Example (Bug Finder Server): polyspace-bug-finder-server -sources
file_name -jsf-coding-rules all-rules
Example (Code Prover Server): polyspace-code-prover-server -sources
file_name -jsf-coding-rules all-rules

Compatibility Considerations

Polyspace will no longer support text format for coding rules
file
Not recommended starting in R2019a

Starting in R2019a, the file where you define a custom selection of coding standard
checkers uses the XML format. You can save custom selections for all the coding
standards that Polyspace supports in the same file.

In previous releases, you saved your custom selection for each coding standard in
separate text files. Polyspace will stop supporting custom coding standard files in text
format in a future release.

Desktop interface:

If you have a project that contains custom coding standard selection files in text format,
Polyspace automatically updates and consolidates those files into a single XML file. If your
project has conflicting configurations that refer to the same custom selection file, the
software saves the consolidated coding standard selection for each configuration to
separate XML files.

To update your text files to the XML format manually, in the Coding Standards & Code

Metrics node of the Configuration pane, click . In the Findings selection window,

 Check JSF AV C++ rules (-jsf-coding-rules)

2-197

select the files then click Save Changes. Polyspace consolidates the files into a single
XML files, and saves this file as filename.xml, where filename is the name of the first
selected file alphabetically. For instance, if you select foo.conf and bar.conf, they are
saved as bar.conf.xml.

Command-line:

If you do not have access to a Polyspace desktop interface, use the file
StandardsConfiguration.xml as a template to create the XML file where you define a
custom selection of coding standard checkers. This template file is in
polyspaceserverroot\polyspace\examples\cxx\Bug_Finder_Example
\sources or polyspaceserverroot\polyspace\examples\cxx
\Code_Prover_Example\sources. Here, polyspaceserverroot is the root
installation folder for the Polyspace products, for instance, C:\Program Files
\Polyspace\R2019a. To update your script, see this table

Option Use Instead
-jsf-coding-rules
"custom_standard.conf"

-checkers-selection-file
"custom_standard.conf.xml" -jsf-
coding-rules from-file

.

Example of Configuration File in XML Format

To turn on MISRA C: 2012 rule 8.1, use this entry:

<standard name="MISRA C:2012">
 ...
 <section name="8 Declarations and definitions">
 ...
 <check id="8.1" state="on">
 </check>
 ...
 </section>
 ...
</standard>

For full list of rule id-s and section names, see:

• “AUTOSAR C++14 Rules” (Polyspace Bug Finder Access)

2 Option Descriptions

2-198

• “CERT C Rules and Recommendations” (Polyspace Bug Finder Access)
• “ISO/IEC TS 17961 Rules” (Polyspace Bug Finder Access)
• “Custom Coding Rules” (Polyspace Bug Finder Access)
• “JSF C++ Rules” (Polyspace Bug Finder Access)
• “MISRA C:2004 and MISRA AC AGC Rules” (Polyspace Bug Finder Access)
• “MISRA C:2012 Directives and Rules” (Polyspace Bug Finder Access)
• “MISRA C++:2008 Rules” (Polyspace Bug Finder Access)

See Also
Do not generate results for (-do-not-generate-results-for)

Topics
“Prepare Scripts for Polyspace Analysis”
“Check for Coding Standard Violations”
“JSF C++ Rules” (Polyspace Bug Finder Access)

 Check JSF AV C++ rules (-jsf-coding-rules)

2-199

Check AUTOSAR C++ 14 (-autosar-cpp14)
Check for violations of AUTOSAR C++ 14 rules

Description
This option affects Bug Finder only.

Specify whether to check for violations of AUTOSAR C++ 14. Each value of the option
corresponds to a subset of guidelines to check.

Set Option
User interface (desktop products only): In your project configuration, the option is on
the Coding Standards & Code Metrics node. See “Dependencies” on page 2-201 for
other options that you must also enable.

Command line: Use the option -autosar-cpp14. See “Command-Line Information” on
page 2-201.

Why Use This Option
Use this option to specify the subset of AUTSOAR C++ 14 rules to check for1.

After analysis, the Results List pane lists the coding standard violations. On the Source
pane, for every coding standard violation, Polyspace assigns a symbol to the keyword
or identifier relevant to the violation.

Settings
Default: all

1. The Polyspace checkers for AUTOSAR C++14 rules supports AUTOSAR C++14 release 18-03 (March
2018). Out of 390 rules from the standard, 194 rules are supported.

2 Option Descriptions

2-200

all
Check for violations of all AUTOSAR C++ 14 rules supported by Polyspace.

See “AUTOSAR C++14 Rules” (Polyspace Bug Finder Access).
required

Check for violations of required rules.

These rules are mandatory requirements placed on your code.
automated

Check for violations of automated rules.

You can automatically enforce these rules by means of static analysis.
from-file

Specify an XML file where you configure a custom selection of checkers for this

coding standard. To create a configuration file, click , then select the rules
you want to check for this coding standard from the right pane of the Findings
selection window. Save the file.

To use or update an existing configuration file, in the Findings selection window,
enter the full path to the file in the field provided or click Browse.

If you set the option to from-file, enable Set checkers by file (-checkers-
selection-file).

Dependencies
• This option is available only if you set Source code language (-lang) to CPP or

C-CPP.

Command-Line Information
Parameter: -autosar-cpp14
Value: all | required | automated | from-file
Default: all
Example (Bug Finder): polyspace-bug-finder -lang cpp -sources file_name
-autosar-cpp14 required

 Check AUTOSAR C++ 14 (-autosar-cpp14)

2-201

Example (Bug Finder Server): polyspace-bug-finder-server -lang cpp -
sources file_name -autosar-cpp14 required

See Also
Do not generate results for (-do-not-generate-results-for)

Topics
“Prepare Scripts for Polyspace Analysis”
“Check for Coding Standard Violations”
“AUTOSAR C++14 Rules” (Polyspace Bug Finder Access)

2 Option Descriptions

2-202

Check SEI CERT-C (-cert-c)
Check for violations of CERT C rules and recommendations

Description
This option affects Bug Finder only.

Specify whether to check for violations of CERT C rules and recommendations. Each
value of the option corresponds to a subset of the coding standard to check.

Set Option
User interface (desktop products only): In your project configuration, the option is on
the Coding Standards & Code Metrics node. See “Dependencies” on page 2-212 for
other options that you must also enable.

Command line: Use the option -cert-c. See “Command-Line Information” on page 2-
212.

Why Use This Option
Use this option to specify the subset of CERT C rules and recommendations to check in
your code.

After analysis, the Results List pane lists the coding standard violations. On the Source
pane, for every coding standard violation, Polyspace assigns a symbol to the keyword
or identifier relevant to the violation.

Settings
Default: all

all-rules
Check for violations of CERT C rules only.

 Check SEI CERT-C (-cert-c)

2-203

See the CERT C website for an explanation of the difference between rules and
recommendations.

List of CERT-C rules that Polyspace checks when you use all-rules

CERT C: Rule ARR30-C
CERT C: Rule ARR32-C
CERT C: Rule ARR36-C
CERT C: Rule ARR37-C
CERT C: Rule ARR38-C
CERT C: Rule ARR39-C
CERT C: Rule CON30-C
CERT C: Rule CON31-C
CERT C: Rule CON32-C
CERT C: Rule CON33-C
CERT C: Rule CON35-C
CERT C: Rule CON36-C
CERT C: Rule CON37-C
CERT C: Rule CON40-C
CERT C: Rule CON41-C
CERT C: Rule CON43-C
CERT C: Rule DCL30-C
CERT C: Rule DCL31-C
CERT C: Rule DCL36-C
CERT C: Rule DCL37-C
CERT C: Rule DCL38-C
CERT C: Rule DCL39-C
CERT C: Rule DCL40-C
CERT C: Rule DCL41-C
CERT C: Rule ENV30-C

2 Option Descriptions

2-204

https://wiki.sei.cmu.edu/confluence/display/c/Rules+versus+Recommendations

CERT C: Rule ENV31-C
CERT C: Rule ENV32-C
CERT C: Rule ENV33-C
CERT C: Rule ENV34-C
CERT C: Rule ERR30-C
CERT C: Rule ERR32-C
CERT C: Rule ERR33-C
CERT C: Rule ERR34-C
CERT C: Rule EXP30-C
CERT C: Rule EXP32-C
CERT C: Rule EXP33-C
CERT C: Rule EXP34-C
CERT C: Rule EXP35-C
CERT C: Rule EXP36-C
CERT C: Rule EXP37-C
CERT C: Rule EXP39-C
CERT C: Rule EXP40-C
CERT C: Rule EXP42-C
CERT C: Rule EXP43-C
CERT C: Rule EXP44-C
CERT C: Rule EXP45-C
CERT C: Rule EXP46-C
CERT C: Rule EXP47-C
CERT C: Rule FIO30-C
CERT C: Rule FIO32-C
CERT C: Rule FIO34-C
CERT C: Rule FIO37-C
CERT C: Rule FIO38-C
CERT C: Rule FIO39-C

 Check SEI CERT-C (-cert-c)

2-205

CERT C: Rule FIO40-C
CERT C: Rule FIO41-C
CERT C: Rule FIO42-C
CERT C: Rule FIO44-C
CERT C: Rule FIO45-C
CERT C: Rule FIO46-C
CERT C: Rule FIO47-C
CERT C: Rule FLP30-C
CERT C: Rule FLP32-C
CERT C: Rule FLP34-C
CERT C: Rule FLP36-C
CERT C: Rule FLP37-C
CERT C: Rule INT30-C
CERT C: Rule INT31-C
CERT C: Rule INT32-C
CERT C: Rule INT33-C
CERT C: Rule INT34-C
CERT C: Rule INT35-C
CERT C: Rule INT36-C
CERT C: Rule MEM30-C
CERT C: Rule MEM31-C
CERT C: Rule MEM33-C
CERT C: Rule MEM34-C
CERT C: Rule MEM35-C
CERT C: Rule MEM36-C
CERT C: Rule MSC30-C
CERT C: Rule MSC32-C
CERT C: Rule MSC33-C
CERT C: Rule MSC37-C

2 Option Descriptions

2-206

CERT C: Rule MSC38-C
CERT C: Rule MSC39-C
CERT C: Rule MSC40-C
CERT C: Rule POS30-C
CERT C: Rule POS33-C
CERT C: Rule POS34-C
CERT C: Rule POS35-C
CERT C: Rule POS36-C
CERT C: Rule POS37-C
CERT C: Rule POS38-C
CERT C: Rule POS39-C
CERT C: Rule POS44-C
CERT C: Rule POS48-C
CERT C: Rule POS49-C
CERT C: Rule POS51-C
CERT C: Rule POS52-C
CERT C: Rule POS54-C
CERT C: Rule PRE30-C
CERT C: Rule PRE31-C
CERT C: Rule PRE32-C
CERT C: Rule SIG30-C
CERT C: Rule SIG31-C
CERT C: Rule SIG34-C
CERT C: Rule SIG35-C
CERT C: Rule STR30-C
CERT C: Rule STR31-C
CERT C: Rule STR32-C
CERT C: Rule STR34-C
CERT C: Rule STR37-C

 Check SEI CERT-C (-cert-c)

2-207

CERT C: Rule STR38-C
CERT C: Rule WIN30-C

publish-2016
Check for violations of CERT C rules only, as defined in the 2016 edition of the SEI
CERT C Coding Standard.

See the CERT C website for an explanation of the difference between rules and
recommendations.

List of CERT-C rules that Polyspace checks when you use publish-2016

CERT C: Rule ARR30-C
CERT C: Rule ARR32-C
CERT C: Rule ARR36-C
CERT C: Rule ARR37-C
CERT C: Rule ARR38-C
CERT C: Rule ARR39-C
CERT C: Rule CON30-C
CERT C: Rule CON31-C
CERT C: Rule CON32-C
CERT C: Rule CON33-C
CERT C: Rule CON35-C
CERT C: Rule CON36-C
CERT C: Rule CON37-C
CERT C: Rule CON40-C
CERT C: Rule CON41-C
CERT C: Rule DCL30-C
CERT C: Rule DCL31-C
CERT C: Rule DCL36-C
CERT C: Rule DCL37-C
CERT C: Rule DCL38-C

2 Option Descriptions

2-208

https://wiki.sei.cmu.edu/confluence/display/c/Rules+versus+Recommendations

CERT C: Rule DCL39-C
CERT C: Rule DCL40-C
CERT C: Rule DCL41-C
CERT C: Rule ENV30-C
CERT C: Rule ENV31-C
CERT C: Rule ENV32-C
CERT C: Rule ENV33-C
CERT C: Rule ENV34-C
CERT C: Rule ERR30-C
CERT C: Rule ERR32-C
CERT C: Rule ERR33-C
CERT C: Rule EXP30-C
CERT C: Rule EXP32-C
CERT C: Rule EXP33-C
CERT C: Rule EXP34-C
CERT C: Rule EXP35-C
CERT C: Rule EXP36-C
CERT C: Rule EXP37-C
CERT C: Rule EXP39-C
CERT C: Rule EXP40-C
CERT C: Rule EXP42-C
CERT C: Rule EXP43-C
CERT C: Rule EXP44-C
CERT C: Rule EXP45-C
CERT C: Rule EXP46-C
CERT C: Rule FIO30-C
CERT C: Rule FIO32-C
CERT C: Rule FIO34-C
CERT C: Rule FIO37-C

 Check SEI CERT-C (-cert-c)

2-209

CERT C: Rule FIO38-C
CERT C: Rule FIO39-C
CERT C: Rule FIO40-C
CERT C: Rule FIO41-C
CERT C: Rule FIO42-C
CERT C: Rule FIO44-C
CERT C: Rule FIO45-C
CERT C: Rule FIO46-C
CERT C: Rule FIO47-C
CERT C: Rule FLP30-C
CERT C: Rule FLP32-C
CERT C: Rule FLP34-C
CERT C: Rule FLP36-C
CERT C: Rule FLP37-C
CERT C: Rule INT30-C
CERT C: Rule INT31-C
CERT C: Rule INT32-C
CERT C: Rule INT33-C
CERT C: Rule INT34-C
CERT C: Rule INT35-C
CERT C: Rule INT36-C
CERT C: Rule MEM30-C
CERT C: Rule MEM31-C
CERT C: Rule MEM33-C
CERT C: Rule MEM34-C
CERT C: Rule MEM35-C
CERT C: Rule MEM36-C
CERT C: Rule MSC30-C
CERT C: Rule MSC32-C

2 Option Descriptions

2-210

CERT C: Rule MSC33-C
CERT C: Rule MSC37-C
CERT C: Rule MSC38-C
CERT C: Rule MSC39-C
CERT C: Rule MSC40-C
CERT C: Rule PRE30-C
CERT C: Rule PRE31-C
CERT C: Rule PRE32-C
CERT C: Rule SIG30-C
CERT C: Rule SIG31-C
CERT C: Rule SIG34-C
CERT C: Rule SIG35-C
CERT C: Rule STR30-C
CERT C: Rule STR31-C
CERT C: Rule STR32-C
CERT C: Rule STR34-C
CERT C: Rule STR37-C
CERT C: Rule STR38-C

all
Check for violations of all CERT C rules and recommendations supported by
Polyspace.

See “CERT C Rules and Recommendations” (Polyspace Bug Finder Access).
from-file

Specify an XML file where you configure a custom selection of checkers for this

coding standard. To create a configuration file, click , then select the rules
and recommendations you want to check for this coding standard from the right pane
of the Findings selection window. Save the file.

To use or update an existing configuration file, in the Findings selection window,
enter the full path to the file in the field provided or click Browse.

 Check SEI CERT-C (-cert-c)

2-211

If you set the option to from-file, enable Set checkers by file (-checkers-
selection-file).

Dependencies
• This option is available only if you set Source code language (-lang) to C or C-

CPP.

For projects with mixed C and C++ code, the SEI CERT-C checker analyzes only .c
files.

Command-Line Information
Parameter: -cert-c
Value: all-rules | publish-2016 | all | from-file
Default: all
Example (Bug Finder): polyspace-bug-finder -lang c -sources file_name -
cert-c all-rules
Example (Bug Finder Server): polyspace-bug-finder-server -lang c -
sources file_name -cert-c all-rules

See Also
Do not generate results for (-do-not-generate-results-for)

Topics
“Prepare Scripts for Polyspace Analysis”
“Check for Coding Standard Violations”
“CERT C Rules and Recommendations” (Polyspace Bug Finder Access)

2 Option Descriptions

2-212

Check SEI CERT-C++ (-cert-cpp)
Check for violations of CERT C++ rules

Description
This option affects Bug Finder only.

Specify whether to check for violations of CERT C++ rules.

Set Option
User interface (desktop products only): In your project configuration, the option is on
the Coding Standards & Code Metrics node. See “Dependencies” on page 2-214 for
other options that you must also enable.

Command line: Use the option -cert-cpp. See “Command-Line Information” on page
2-214.

Why Use This Option
Use this option to specify the subset of CERT C++ rules to check in your code.

After analysis, the Results List pane lists the coding standard violations. On the Source
pane, for every coding standard violation, Polyspace assigns a symbol to the keyword
or identifier relevant to the violation.

Settings
Default: all

all
Check for violations of all CERT C++ rules supported by Polyspace.

See “CERT C++ Rules” (Polyspace Bug Finder Access).

 Check SEI CERT-C++ (-cert-cpp)

2-213

from-file
Specify an XML file where you configure a custom selection of checkers for this

coding standard. To create a configuration file, click , then select the rules
you want to check for this coding standard from the right pane of the Findings
selection window. Save the file.

To use or update an existing configuration file, in the Findings selection window,
enter the full path to the file in the field provided or click Browse.

If you set the option to from-file, enable Set checkers by file (-checkers-
selection-file).

Dependencies
• This option is available only if you set Source code language (-lang) to CPP or

C-CPP.

For projects with mixed C and C++ code, the SEI CERT-C++ checker analyzes
only .cpp files.

Command-Line Information
Parameter: -cert-cpp
Value: all | from-file |
Default: all
Example (Bug Finder): polyspace-bug-finder -lang cpp -sources file_name
-cert-cpp all
Example (Bug Finder Server): polyspace-bug-finder-server -lang cpp -
sources file_name -cert-cpp all

See Also
Do not generate results for (-do-not-generate-results-for)

Topics
“Prepare Scripts for Polyspace Analysis”

2 Option Descriptions

2-214

“Check for Coding Standard Violations”

 Check SEI CERT-C++ (-cert-cpp)

2-215

Check ISO/IEC TS 17961 (-iso-17961)
Check for violations of ISO/IEC TS 17961 rules

Description
This option affects Bug Finder only.

Specify whether to check for violations of ISO/IEC TS 17961 rules.

Set Option
User interface (desktop products only): In your project configuration, the option is on
the Coding Standards & Code Metrics node. See “Dependencies” on page 2-217 for
other options that you must also enable.

Command line: Use the option -iso-17961. See “Command-Line Information” on page
2-217.

Why Use This Option
Use this option to specify the subset of ISO/IEC TS 17961 rules to check for.

After analysis, the Results List pane lists the coding standard violations. On the Source
pane, for every coding standard violation, Polyspace assigns a symbol to the keyword
or identifier relevant to the violation.

Settings
Default: all

decidable
Check for violations of decidable rules. Violations of these rules depend only on
compile-time static properties, for instance object type or scope of identifiers.

2 Option Descriptions

2-216

all
Check for violations of all ISO/IEC TS 17961 rules Polyspace supports.

from-file
Specify an XML file where you configure a custom selection of checkers for this

coding standard. To create a configuration file, click , then select the rules
and recommendations you want to check for this coding standard from the right pane
of the Findings selection window. Save the file.

To use or update an existing configuration file, in the Findings selection window,
enter the full path to the file in the field provided or click Browse.

If you set the option to from-file, enable Set checkers by file (-checkers-
selection-file).

Dependencies
• This option is available only if you set Source code language (-lang) to C or C-

CPP.

Command-Line Information
Parameter: -iso-17961
Value:decidable | all | from-file
Default: all
Example (Bug Finder): polyspace-bug-finder -lang c -sources file_name -
iso-17961 decidable
Example: polyspace-bug-finder-server -lang c -sources file_name -
iso-17961 decidable

See Also
Do not generate results for (-do-not-generate-results-for)

Topics
“Prepare Scripts for Polyspace Analysis”
“Check for Coding Standard Violations”

 Check ISO/IEC TS 17961 (-iso-17961)

2-217

“ISO/IEC TS 17961 Rules” (Polyspace Bug Finder Access)

2 Option Descriptions

2-218

Calculate code metrics (-code-metrics)
Compute and display code complexity metrics

Description
Specify that Polyspace must compute and display code complexity metrics for your source
code. The metrics include file metrics such as number of lines and function metrics such
as cyclomatic complexity and estimated size of local variables.

For more information, see “Compute Code Complexity Metrics”.

Set Option
User interface (desktop products only): In your project configuration, the option is on
the Coding Standards & Code Metrics node.

Command line: Use the option -code-metrics. See “Command-Line Information” on
page 2-220.

Why Use This Option
By default, Polyspace does not calculate code complexity metrics. If you want these
metrics in your analysis results, before running analysis, set this option.

High values of code complexity metrics can lead to obscure code and increase chances of
coding errors. Additionally, if you run a Code Prover verification on your source code, you
might benefit from checking your code complexity metrics first. If a function is too
complex, attempts to verify the function can lead to a lot of unproven code. For
information on how to cap your code complexity metrics, see “Compute Code Complexity
Metrics”.

Settings
 On

Polyspace computes and displays code complexity metrics on the Results List pane.

 Calculate code metrics (-code-metrics)

2-219

 Off (default)
Polyspace does not compute complexity metrics.

Tips
If you want to compute only the code complexity metrics for your code:

• In Bug Finder, disable checking of defects. See Find defects (-checkers).
• In Code Prover, run verification up to the Source Compliance Checking phase.

See Verification level (-to).

Command-Line Information
Parameter: -code-metrics
Default: Off
Example (Bug Finder): polyspace-bug-finder -sources file_name -code-
metrics
Example (Code Prover): polyspace-code-prover -sources file_name -code-
metrics
Example (Bug Finder Server): polyspace-bug-finder-server -sources
file_name -code-metrics
Example (Code Prover Server): polyspace-code-prover-server -sources
file_name -code-metrics

See Also

Topics
“Compute Code Complexity Metrics”
“Code Metrics” (Polyspace Bug Finder Access)

2 Option Descriptions

2-220

Find defects (-checkers)
Enable or disable defect checkers

Description
This option affects a Bug Finder analysis only.

Enable checkers for bugs/coding defects.

Set Option
User interface (desktop products only): In your project configuration, the option is on
the Bug Finder Analysis node.

Command line: Use the option -checkers. See “Command-Line Information” on page
2-222.

Why Use This Option
The default set of checkers is designed to find the most meaningful bugs in most software
development situations. If you have specific needs, enable or disable individual defect
checkers. For instance, if you want to follow a specific security standard, choose a
different subset of checkers.

Settings
Default: default

default
A subset of defects defined by the software.

See “Polyspace Bug Finder Defects Checkers Enabled by Default”.
all

All defects.

 Find defects (-checkers)

2-221

See Bug Finder Defects for a list of all defects checkers.
CWE

A subset of defects that correspond to CWE™ IDs.

See “CWE Coding Standard and Polyspace Results”.
custom

Choose the defects you want to find by selecting categories of checkers or specific
defects.

Tips
You can use a spreadsheet to keep track of the defect checkers that you enable and add
notes explaining why you do not enable the other checkers. A spreadsheet of checkers is
provided in polyspaceroot\polyspace\resources. Here, polyspaceroot is the
Polyspace installation folder, such as C:\Program Files\Polyspace\R2019a.

Command-Line Information
Regardless of order, the shell script processes the -checkers option, and then -
disable-checkers option.

For the command-line parameters values, see “Short Names of Bug Finder Defect
Checkers”.
Parameter: -checkers
Value: default | all | none | CWE | defect group | defect parameters
Default: default
Parameter: -disable-checkers
Value: defect group | defect parameters
Example 1 (Bug Finder): polyspace-bug-finder -sources filename -
checkers numerical,data_flow -disable-checkers FLOAT_ZERO_DIV
Example 2 (Bug Finder): polyspace-bug-finder -sources filename -
checkers default -disable-checkers concurrency,dead_code
Example 1 (Bug Finder Server): polyspace-bug-finder-server -sources
filename -checkers numerical,data_flow -disable-checkers
FLOAT_ZERO_DIV

2 Option Descriptions

2-222

Example 2 (Bug Finder Server): polyspace-bug-finder-server -sources
filename -checkers default -disable-checkers concurrency,dead_code

See Also
“Defects” (Polyspace Bug Finder Access)

Topics
“Prepare Scripts for Polyspace Analysis”
“Short Names of Bug Finder Defect Checkers”
“Bug Finder Defect Groups”

 Find defects (-checkers)

2-223

Class (-class-analyzer)
Specify classes that you want to verify

Description
This option affects a Code Prover analysis only.

Specify classes that Polyspace uses to generate a main.

Set Option
User interface (desktop products only): In your project configuration, the option is on
the Code Prover Verification node. See “Dependencies” on page 2-225 for other options
that you must also enable.

Command line: Use the option -class-analyzer. See “Command-Line Information” on
page 2-225.

Why Use This Option
If you are verifying a module or library, Code Prover generates a main function if one
does not exist. If a main exists, the analysis uses the existing main.

Use this option and the option Functions to call within the specified
classes (-class-analyzer-calls) to specify the class methods that the generated
main must call. Unless a class method is called directly or indirectly from main, the
software does not analyze the method.

Settings
Default: all

all
Polyspace can use all classes to generate a main. The generated main calls methods
that you specify using Functions to call within the specified classes.

2 Option Descriptions

2-224

none
The generated main cannot call any class method.

custom
Polyspace can use classes that you specify to generate a main. The generated main
calls methods from classes that you specify using Functions to call within the
specified classes.

Dependencies
You can use this option only if all of the following are true:

• Your code does not contain a main function.
• Source code language (-lang) is set to CPP or C-CPP.
• Verify module or library (-main-generator) is selected.

Tips
If you select none for this option, Polyspace will not verify class methods that you do not
call explicitly in your code.

Command-Line Information
Parameter: -class-analyzer
Value: all | none | custom=class1[,class2,...]
Default: all
Example (Code Prover): polyspace-code-prover -sources file_name -main-
generator -class-analyzer custom=myClass1,myClass2
Example (Code Prover Server): polyspace-code-prover-server -sources
file_name -main-generator -class-analyzer custom=myClass1,myClass2

See Also
Analyze class contents only (-class-only) | Functions to call within
the specified classes (-class-analyzer-calls) | Skip member
initialization check (-no-constructors-init-check) | Verify module or
library (-main-generator)

 Class (-class-analyzer)

2-225

Topics
“Prepare Scripts for Polyspace Analysis”
“Verify C++ Classes” (Polyspace Code Prover Server)

2 Option Descriptions

2-226

Functions to call within the specified classes
(-class-analyzer-calls)
Specify class methods that you want to verify

Description
This option affects a Code Prover analysis only.

Specify class methods that Polyspace uses to generate a main. The generated main can
call static, public and protected methods in classes that you specify using the Class
option.

Set Option
User interface (desktop products only): In your project configuration, the option is on
the Code Prover Verification node. See “Dependencies” on page 2-229 for other options
that you must also enable.

Command line: Use the option -class-analyzer-calls. See “Command-Line
Information” on page 2-229.

Why Use This Option
If you are verifying a module or library, Code Prover generates a main function if one
does not exist. If a main exists, the analysis uses the existing main.

Use this option and the option Class (-class-analyzer) to specify the class methods
that the generated main must call. Unless a class method is called directly or indirectly
from main, the software does not analyze the method.

Settings
Default: unused

 Functions to call within the specified classes (-class-analyzer-calls)

2-227

all
The generated main calls all public and protected methods. It does not call methods
inherited from a parent class.

all-public
The generated main calls all public methods. It does not call methods inherited from
a parent class.

inherited-all
The generated main calls all public and protected methods including those inherited
from a parent class.

inherited-all-public
The generated main calls all public methods including those inherited from a parent
class.

unused
The generated main calls public and protected methods that are not called in the
code.

unused-public
The generated main calls public methods that are not called in the code. It does not
call methods inherited from a parent class.

inherited-unused
The generated main calls public and protected methods that are not called in the
code including those inherited from a parent class.

inherited-unused-public
The generated main calls public methods that are not called in the code including
those inherited from a parent class.

custom
The generated main calls the methods that you specify.

Enter function names or choose from a list.

•
Click to add a field and enter the function name.

• Click to list functions in your code. Choose functions from the list.

If you use the scope resolution operator to specify the function from a particular
namespace, enter the fully qualified name, for instance, myClass::myMethod(int).

2 Option Descriptions

2-228

If the function does not have a parameter, use an empty parenthesis, for instance,
myClass::myMethod().

Dependencies
You can use this option only if:

• Source code language (-lang) is set to CPP or C-CPP.
• Verify module or library (-main-generator) is selected.

Command-Line Information
Parameter: -class-analyzer-calls
Value: all | all-public | inherited-all | inherited-all-public | unused |
unused-public | inherited-unused | inherited-unused-public |
custom=method1[,method2,...]
Default: unused
Example (Code Prover): polyspace-code-prover -sources file_name -main-
generator -class-analyzer custom=myClass1,myClass2 -class-analyzer-
calls unused-public
Example (Code Prover Server): polyspace-code-prover-server -sources
file_name -main-generator -class-analyzer custom=myClass1,myClass2 -
class-analyzer-calls unused-public

See Also
Class (-class-analyzer) | Verify module or library (-main-generator)

Topics
“Prepare Scripts for Polyspace Analysis”
“Verify C++ Classes” (Polyspace Code Prover Server)

 Functions to call within the specified classes (-class-analyzer-calls)

2-229

Analyze class contents only (-class-only)
Do not analyze code other than class methods

Description
This option affects a Code Prover analysis only.

Specify that Polyspace must verify only methods of classes that you specify using the
option Class (-class-analyzer).

Set Option
User interface (desktop products only): In your project configuration, the option is on
the Code Prover Verification node. See “Dependencies” on page 2-231 for other options
that you must also enable.

Command line: Use the option -class-only. See “Command-Line Information” on
page 2-231.

Why Use This Option
Use this option to restrict the analysis to certain class methods only.

You specify these methods through the options:

• Class (-class-analyzer)
• Functions to call within the specified classes (-class-analyzer-

calls)

When you analyze a module or library, Code Prover generates a main function if one does
not exist. The main function calls class methods using these two options and functions
that are not class methods using other options. Code Prover analyzes these methods and
functions for robustness to all inputs. If you use this option, Code Prover analyzes the
methods only.

2 Option Descriptions

2-230

Settings
 On

Polyspace verifies the class methods only. It stubs functions out of class scope even if
the functions are defined in your code.

 Off (default)
Polyspace verifies functions out of class scope in addition to class methods.

Dependencies
You can use this option only if all of the following are true:

• Your code does not contain a main function.
• Source code language (-lang) is set to CPP or C-CPP.
• Verify module or library (-main-generator) is selected.

If you select this option, you must specify the classes using the Class (-class-
analyzer) option.

Tips
Use this option:

• For robustness verification of class methods. Unless you use this option, Polyspace
verifies methods that you call in your code only for your input combinations.

• In case of scaling.

Command-Line Information
Parameter: -class-only
Default: Off
Example (Code Prover): polyspace-code-prover -sources file_name -main-
generator -class-analyzer custom=myClass1,myClass2 -class-analyzer-
calls unused-public -class-only

 Analyze class contents only (-class-only)

2-231

Example (Code Prover Server): polyspace-code-prover-server -sources
file_name -main-generator -class-analyzer custom=myClass1,myClass2 -
class-analyzer-calls unused-public -class-only

See Also
Class (-class-analyzer) | Functions to call within the specified
classes (-class-analyzer-calls) | Verify module or library (-main-
generator)

Topics
“Prepare Scripts for Polyspace Analysis”
“Verify C++ Classes” (Polyspace Code Prover Server)

2 Option Descriptions

2-232

Initialization functions (-functions-called-
before-main)
Specify functions that you want the generated main to call ahead of other functions

Description
This option affects a Code Prover analysis only.

Specify functions that you want the generated main to call ahead of other functions.

Set Option
User interface (desktop products only): In your project configuration, the option is on
the Code Prover Verification node. See “Dependencies” on page 2-234 for other options
that you must also enable.

Command line: Use the option -functions-called-before-main. See “Command-
Line Information” on page 2-235.

Why Use This Option
If you are verifying a module or library, Code Prover generates a main function if one
does not exist. If a main exists, the analysis uses the existing main.

Use this option along with the option Functions to call (-main-generator-
calls) to specify which functions the generated main must call. Unless a function is
called directly or indirectly from main, the software does not analyze the function.

Settings
No Default

Enter function names or choose from a list.

 Initialization functions (-functions-called-before-main)

2-233

•
Click to add a field and enter the function name.

• Click to list functions in your code. Choose functions from the list.

If the function or method is not overloaded, specify the function name. Otherwise, specify
the function prototype with arguments. For instance, in the following code, you must
specify the prototypes func(int) and func(double).

int func(int x) {
 return(x * 2);
}
double func(double x) {
 return(x * 2);
}

For C++, if the function is:

• A class method: The generated main calls the class constructor before calling this
function.

• Not a class method: The generated main calls this function before calling class
methods.

If you use the scope resolution operator to specify the function from a particular
namespace, enter the fully qualified name, for instance, myClass::init(int). If the
function does not have a parameter, use an empty parenthesis, for instance,
myClass::init().

Dependencies
This option is enabled only if you select Verify module or library under Code Prover
Verification and your code does not contain a main function.

Tips
Although these functions are called ahead of other functions, they can be called in
arbitrary order. If you want to call your initialization functions in a specific order,
manually write a main function to call them.

2 Option Descriptions

2-234

Command-Line Information
Parameter: -functions-called-before-main
Value: function1[,function2[,...]]
No Default
Example 1 (Code Prover): polyspace-code-prover -sources file_name -
main-generator -functions-called-before-main myfunc
Example 2 (Code Prover): polyspace-code-prover -sources file_name -
main-generator -functions-called-before-main myClass::init(int)
Example 1 (Code Prover Server): polyspace-code-prover-server -sources
file_name -main-generator -functions-called-before-main myfunc
Example 2 (Code Prover Server): polyspace-code-prover-server -sources
file_name -main-generator -functions-called-before-main
myClass::init(int)

See Also
Class (-class-analyzer) | Functions to call (-main-generator-calls) |
Functions to call within the specified classes (-class-analyzer-
calls) | Variables to initialize (-main-generator-writes-variables) |
Verify module or library (-main-generator)

Topics
“Prepare Scripts for Polyspace Analysis”
“Verify C Application Without main Function” (Polyspace Code Prover Server)
“Verify C++ Classes” (Polyspace Code Prover Server)

 Initialization functions (-functions-called-before-main)

2-235

Verify whole application
Stop verification if sources files are incomplete and do not contain a main function

Description
This option affects a Code Prover analysis only.

Specify that Polyspace verification must stop if a main function is not present in the
source files.

If you select a Visual C++ setting for Compiler (-compiler), you can specify which
function must be considered as main. See Main entry point (-main).

Set Option
User interface (desktop products only): In your project configuration, the option is on
the Code Prover Verification node.

Command line: There is no corresponding command-line option. See “Command-Line
Information” on page 2-237.

Settings
 On

Polyspace verification stops if it does not find a main function in the source files.
 Off (default)

Polyspace continues verification even when a main function is not present in the
source files. If a main is not present, it generates a file __polyspace_main.c that
contains a main function.

2 Option Descriptions

2-236

Command-Line Information
Unlike the user interface, by default, a verification from the command line stops if it does
not find a main function in the source files. If you specify the option -main-generator,
Polyspace generates a main if it cannot find one in the source files.

See Also
Verify module or library (-main-generator)

Topics
“Prepare Scripts for Polyspace Analysis”
“Verify C Application Without main Function” (Polyspace Code Prover Server)
“Verify C++ Classes” (Polyspace Code Prover Server)

 Verify whole application

2-237

Main entry point (-main)
Specify a Microsoft Visual C++ extensions of main

Description
This option affects a Code Prover analysis only.

Specify the function that you want to use as main. If the function does not exist, the
verification stops with an error message. Use this option to specify Microsoft Visual C++
extensions of main.

Set Option
User interface (desktop products only): In your project configuration, the option is on
the Code Prover Verification node. See “Dependencies” on page 2-239 for other options
that you must also enable.

Command line: Use the option -main. See “Command-Line Information” on page 2-239.

Settings
Default: _tmain

_tmain
Use _tmain as entry point to your code.

wmain
Use wmain as entry point to your code.

_tWinMain
Use _tWinMain as entry point to your code.

wWinMain
Use wWinMain as entry point to your code.

WinMain
Use WinMain as entry point to your code.

2 Option Descriptions

2-238

DllMain
Use DllMain as entry point to your code.

Dependencies
This option is enabled only if you:

• Set Source code language (-lang) to CPP.
• Select Verify whole application.

Command-Line Information
Parameter: -main
Value: _tmain | wmain | _tWinMain | wWinMain | WinMain | DllMain
Example (Code Prover): polyspace-code-prover -sources file_name -
compiler visual14.0 -main _tmain
Example (Code Prover Server): polyspace-code-prover-server -sources
file_name -compiler visual14.0 -main _tmain

See Also
Verify module or library (-main-generator) | Verify whole application

Topics
“Prepare Scripts for Polyspace Analysis”

 Main entry point (-main)

2-239

Functions to call (-main-generator-calls)
Specify functions that you want the generated main to call after the initialization
functions

Description
This option affects a Code Prover analysis only.

Specify functions that you want the generated main to call. The main calls these
functions after the ones you specify through the option Initialization functions
(-functions-called-before-main).

Set Option
User interface (desktop products only): In your project configuration, the option is on
the Code Prover Verification node. See “Dependencies” on page 2-241 for other options
that you must also enable.

Command line: Use the option -main-generator-calls. See “Command-Line
Information” on page 2-242.

Why Use This Option
If you are verifying a module or library, Code Prover generates a main function if one
does not exist. If a main exists, the analysis uses the existing main.

Use this option along with the option Initialization functions (-functions-
called-before-main) to specify which functions the generated main must call. Unless
a function is called directly or indirectly from main, the software does not analyze the
function.

Settings
Default: unused

2 Option Descriptions

2-240

none
The generated main does not call any function.

unused
The generated main calls only those functions that are not called in the source code.
It does not call inlined functions.

all
The generated main calls all functions except inlined ones.

custom
The generated main calls functions that you specify.

Enter function names or choose from a list.

•
Click to add a field and enter the function name.

• Click to list functions in your code. Choose functions from the list.

If you use the scope resolution operator to specify the function from a particular
namespace, enter the fully qualified name, for instance, myClass::myMethod(int).
If the function does not have a parameter, use an empty parenthesis, for instance,
myClass::myMethod().

Dependencies
This option is available only if you select Verify module or library (-main-
generator).

Tips
• Select unused when you use Code Prover Verification > Verify files

independently.
• If you want the generated main to call an inlined function, select custom and specify

the name of the function.
• To verify a multitasking application without a main, select none.
• The generated main can call the functions in arbitrary order. If you want to call your

functions in a specific order, manually write a main function to call them.

 Functions to call (-main-generator-calls)

2-241

• To specify instantiations of templates as arguments, run analysis once with the option
argument all. Search for the template name in the analysis log and use the template
name as it appears in the analysis log for the option argument.

For instance, to specify this template function instantiation as option argument:

template <class T>
T GetMax (T a, T b) {
 T result;
 result = (a>b)? a : b;
 return (result);
}
template int GetMax<int>(int, int); // explicit instantiation

Run an analysis with the option -main-generator-calls all. Search for getMax
in the analysis log. You see the function format:

T1 getMax<int>(T1, T1)

To call only this template instantiation, remove the space between the arguments and
use the option:

-main-generator-calls custom="T1 getMax<int>(T1,T1)"

Command-Line Information
Parameter: -main-generator-calls
Value: none | unused | all | custom=function1[,function2[,...]]
Default: unused
Example (Code Prover): polyspace-code-prover -sources file_name -main-
generator -main-generator-calls all
Example (Code Prover Server): polyspace-code-prover-server -sources
file_name -main-generator -main-generator-calls all

See Also
Class (-class-analyzer) | Functions to call within the specified
classes (-class-analyzer-calls) | Initialization functions (-
functions-called-before-main) | Verify module or library (-main-
generator)

2 Option Descriptions

2-242

Topics
“Prepare Scripts for Polyspace Analysis”
“Verify C Application Without main Function” (Polyspace Code Prover Server)

 Functions to call (-main-generator-calls)

2-243

Variables to initialize (-main-generator-
writes-variables)
Specify global variables that you want the generated main to initialize

Description
This option affects a Code Prover analysis only.

Specify global variables that you want the generated main to initialize. Polyspace
considers these variables to have any value allowed by their type.

Set Option
User interface (desktop products only): In your project configuration, the option is on
the Code Prover Verification node. See “Dependencies” on page 2-245 for other options
that you must also enable.

Command line: Use the option -main-generator-writes-variables. See
“Command-Line Information” on page 2-245.

Why Use This Option
If you are verifying a module or library, Code Prover generates a main function if one
does not exist. If a main exists, the analysis uses the existing main.

Use this option to specify which global variables the generated main must initialize.

Settings
Default:

• C code — public
• C++ Code — uninit

2 Option Descriptions

2-244

uninit
C++ Only

The generated main only initializes global variables that you have not initialized
during declaration.

none
The generated main does not initialize global variables.

public
The generated main initializes all global variables except those declared with
keywords static and const.

all
The generated main initializes all global variables except those declared with
keyword const.

custom

The generated main only initializes global variables that you specify. Click to add
a field. Enter a global variable name.

Dependencies
You can use this option only if the following are true:

• Your code does not contain a main function.
• Verify module or library (-main-generator) is selected.

The option is disabled if you enable the option Ignore default initialization of
global variables (-no-def-init-glob). Global variables are considered as
uninitialized until you explicitly initialize them in the code.

Command-Line Information
Parameter: -main-generator-writes-variables
Value: uninit | none | public | all | custom=variable1[,variable2[,...]]
Default: (C) public | (C++) uninit

 Variables to initialize (-main-generator-writes-variables)

2-245

Example (Code Prover): polyspace-code-prover -sources file_name -main-
generator -main-generator-writes-variables all
Example (Code Prover Server): polyspace-code-prover-server -sources
file_name -main-generator -main-generator-writes-variables all

See Also
Verify module or library (-main-generator)

Topics
“Prepare Scripts for Polyspace Analysis”
“Verify C Application Without main Function” (Polyspace Code Prover Server)

2 Option Descriptions

2-246

Skip member initialization check (-no-
constructors-init-check)
Do not check if class constructor initializes class members

Description
This option affects a Code Prover analysis only.

Specify that Polyspace must not check whether each class constructor initializes all class
members.

Set Option
User interface (desktop products only): In your project configuration, the option is on
the Code Prover Verification node. See “Dependencies” on page 2-248 for other options
that you must also enable.

Command line: Use the option -no-constructors-init-check. See “Command-Line
Information” on page 2-248.

Why Use This Option
Use this option to disable checks for initialization of class members in constructors.

Settings
 On

Polyspace does not check whether each class constructor initializes all class
members.

 Off (default)
Polyspace checks whether each class constructor initializes all class members. It uses
the functions check_NIV() and check_NIP() in the generated main to perform
these checks. It checks for initialization of:

 Skip member initialization check (-no-constructors-init-check)

2-247

• Integer types such as int, char and enum, both signed or unsigned.
• Floating-point types such as float and double.
• Pointers.

Dependencies
You can use this option only if all of the following are true:

• Your code does not contain a main function.
• Source code language (-lang) is set to CPP or C-CPP.
• Verify module or library (-main-generator) is selected.

If you select this option, you must specify the classes using theClass (-class-
analyzer) option.

Command-Line Information
Parameter: -no-constructors-init-check
Default: Off
Example (Code Prover): polyspace-code-prover -sources file_name -main-
generator -class-analyzer custom=myClass1,myClass2 -class-analyzer-
calls unused-public -no-constructors-init-check
Example (Code Prover Server): polyspace-code-prover-server -sources
file_name -main-generator -class-analyzer custom=myClass1,myClass2 -
class-analyzer-calls unused-public -no-constructors-init-check

See Also
Class (-class-analyzer) | Verify module or library (-main-generator)

Topics
“Prepare Scripts for Polyspace Analysis”
“Verify C++ Classes” (Polyspace Code Prover Server)

2 Option Descriptions

2-248

Verify files independently (-unit-by-unit)
Verify each source file independently of other source files

Description
This option affects a Code Prover analysis only.

Specify that each source file must be verified independently of other source files. Each file
is verified individually, independent of other files in the module. Verification results can be
viewed for the entire project or for individual files.

After you open the verification result for one file, in the user interface of the Polyspace
desktop products, you can see a summary of results for all files on the Dashboard pane.
You can open the results for each file directly from this summary table.

Each result file (with name ps_results.pscp) is saved in a subfolder of the results
folder. The subfolder has the same name as the source file being analyzed.

Set Option
User interface (desktop products only): In your project configuration, the option is on
the Code Prover Verification node. See “Dependencies” on page 2-250 for other options
that you must also enable.

Command line: Use the option -unit-by-unit. See “Command-Line Information” on
page 2-250.

Why Use This Option
There are many reasons you might want to verify each source file independently of other
files.

For instance, if verification of a project takes very long, you can perform a file by file
verification to identify which file is slowing the verification.

 Verify files independently (-unit-by-unit)

2-249

Settings
 On

Polyspace creates a separate verification job for each source file.

 Off (default)
Polyspace creates a single verification job for all source files in a module.

Dependencies
This option is enabled only if you select Verify module or library (-main-
generator).

Tips
• If you perform a file by file verification, you cannot specify multitasking options.
• If your verification for the entire project takes very long, perform a file by file
verification. After the verification is complete for a file, you can view the results while
other files are still being verified.

• You can generate a report of the verification results for each file or for all the files
together.

To generate a single report for all the files:

1 Open the results for one file.
2 Select Reporting > Run Report. Before generating the report, select the option

Generate a single report including all unit results.
• When you perform a file-by-file verification, you can see many instances of unused

variables. Some of these variables might be used in other files but show as unused in a
file-by-file verification.

Command-Line Information
Parameter: -unit-by-unit
Default: Off

2 Option Descriptions

2-250

Example (Code Prover): polyspace-code-prover -sources file_name -unit-
by-unit
Example (Code Prover Server): polyspace-code-prover-server -sources
file_name -unit-by-unit

See Also
Common source files (-unit-by-unit-common-source)

Topics
“Prepare Scripts for Polyspace Analysis”

 Verify files independently (-unit-by-unit)

2-251

Common source files (-unit-by-unit-
common-source)
Specify files that you want to include with each source file during a file by file verification

Description
This option affects a Code Prover analysis only.

For a file by file verification, specify files that you want to include with each source file
verification. These files are compiled once, and then linked to each verification.

Set Option
User interface (desktop products only): In your project configuration, the option is on
the Code Prover Verification node. See “Dependencies” on page 2-253 for other options
that you must also enable.

Command line: Use the option -unit-by-unit-common-source. See “Command-Line
Information” on page 2-253.

Why Use This Option
There are many reasons you might want to verify each source file independently of other
files. For instance, if verification of a project takes very long, you can perform a file by file
verification to identify which file is slowing the verification.

If you perform a file by file verification, some of your files might be missing information
present in the other files. Place the missing information in a common file and use this
option to specify the file for verification. For instance, if multiple source files call the same
function, use this option to specify a file that contains the function definition or a function
stub. Otherwise, Polyspace uses its own stubs for functions that are called but not defined
in the source files. The assumptions behind the Polyspace stubs can be broader than what
you want, leading to orange checks.

2 Option Descriptions

2-252

Settings
No Default

Click to add a field. Enter the full path to a file. Otherwise, use the button to
navigate to the file location.

Dependencies
This option is enabled only if you select Verify files independently (-unit-by-
unit).

Command-Line Information
Parameter: -unit-by-unit-common-source
Value: file1[,file2[,...]]
No Default
Example (Code Prover): polyspace-code-prover -sources file_name -unit-
by-unit -unit-by-unit-common-source definitions.c
Example (Code Prover Server): polyspace-code-prover-server -sources
file_name -unit-by-unit -unit-by-unit-common-source definitions.c

See Also
Verify files independently (-unit-by-unit)

Topics
“Prepare Scripts for Polyspace Analysis”

 Common source files (-unit-by-unit-common-source)

2-253

Verify model generated code (-main-
generator)
Specify that a main function must be generated if it is not present in source files

Description
In Bug Finder, use this option only for code generated from Simulink models.

Specify that Polyspace must generate a main function if it does not find one in the source
files.

Set Option
User interface (desktop products only): In your project configuration, the option is on
the Code Prover Verification node.

Command line: Use the option -main-generator. See “Command-Line Information” on
page 2-255.

Settings
This option is always enabled for code generated from models.

Polyspace generates a main function for the analysis. The generated main contains cyclic
code that executes in a loop. The loop can run an unspecified number of times.

The main performs the following functions before the loop begins:

• Initializes variables specified by Parameters (-variables-written-before-
loop).

• Calls the functions specified by Initialization functions (-functions-
called-before-loop).

The main then performs the following functions in the loop:

2 Option Descriptions

2-254

• Calls the functions specified by Step functions (-functions-called-in-
loop).

• Writes to variables specified by Inputs (-variables-written-in-loop).

Finally, the main calls the functions specified by Termination functions (-
functions-called-after-loop).

Command-Line Information
Parameter: -main-generator
Default: On
Example (Bug Finder): polyspace-bug-finder -sources file_name -main-
generator ...
Example (Code Prover): polyspace-code-prover -sources file_name -main-
generator ...
Example (Bug Finder Server): polyspace-bug-finder-server -sources
file_name -main-generator ...
Example (Code Prover Server): polyspace-code-prover-server -sources
file_name -main-generator ...

See Also
Initialization functions (-functions-called-before-loop) | Inputs (-
variables-written-in-loop) | Parameters (-variables-written-before-
loop) | Step functions (-functions-called-in-loop) | Termination
functions (-functions-called-after-loop) | Verify model generated code
(-main-generator)

 Verify model generated code (-main-generator)

2-255

Initialization functions (-functions-called-
before-loop)
Specify functions that the generated main must call before the cyclic code loop

Description
Use this option only for code generated from Simulink models.

Specify functions that the generated main must call before the cyclic code begins.

Set Option
User interface (desktop products only): In your project configuration, the option is
available on the Code Prover Verification node.

Command line: Use the option -functions-called-before-loop. See “Command-
Line Information” on page 2-257.

Settings
No Default

Click to add a field. Enter function name.

If you use the scope resolution operator to specify the function from a particular
namespace, enter the fully qualified name, for instance, myClass::init(int). If the
function does not have a parameter, use an empty parenthesis, for instance,
myClass::init().

Tips
• If you specify a function for the option Termination functions (-functions-

called-after-loop), you cannot specify it for this option.

2 Option Descriptions

2-256

Command-Line Information
Parameter: -functions-called-before-loop
No Default
Value: function1[,function2[,...]]
Example (Bug Finder): polyspace-bug-finder -sources file_name -main-
generator -functions-called-before-loop myfunc
Example (Code Prover): polyspace-code-prover -sources file_name -main-
generator -functions-called-before-loop myfunc
Example (Bug Finder Server): polyspace-bug-finder-server -sources
file_name -main-generator -functions-called-before-loop myfunc
Example (Code Prover Server): polyspace-code-prover-server -sources
file_name -main-generator -functions-called-before-loop myfunc

See Also
Step functions (-functions-called-in-loop) | Termination functions (-
functions-called-after-loop) | Verify model generated code (-main-
generator)

 Initialization functions (-functions-called-before-loop)

2-257

Step functions (-functions-called-in-
loop)
Specify functions that the generated main must call in the cyclic code loop

Description
Use this option only for code generated from Simulink models.

Specify functions that the generated main must call in each cycle of the cyclic code.

Set Option
User interface (desktop products only): In your project configuration, the option is
available on the Code Prover Verification node.

Command line: Use the option -functions-called-in-loop. See “Command-Line
Information” on page 2-259.

Settings
Default: none

none
The generated main does not call functions in the cyclic code.

all
The generated main calls all functions except inlined ones. If you specify certain
functions for the options Initialization functions or Termination functions, the
generated main does not call those functions in the cyclic code.

custom

The generated main calls functions that you specify. Click to add a field. Enter
function name.

2 Option Descriptions

2-258

If you use the scope resolution operator to specify the function from a particular
namespace, enter the fully qualified name, for instance, myClass::myMethod(int).
If the function does not have a parameter, use an empty parenthesis, for instance,
myClass::myMethod().

Tips
If you have specified a function for the option Initialization functions (-
functions-called-before-loop) or Termination functions (-functions-
called-after-loop), to call it inside the cyclic code, use custom and specify the
function name.

Command-Line Information
Parameter: -functions-called-in-loop
Value: none | all | custom=function1[,function2[,...]]
Default: none
Example (Bug Finder): polyspace-bug-finder -sources file_name -main-
generator -functions-called-in-loop all
Example (Code Prover): polyspace-code-prover -sources file_name -main-
generator -functions-called-in-loop all
Example (Bug Finder Server): polyspace-bug-finder-server -sources
file_name -main-generator -functions-called-in-loop all
Example (Code Prover Server): polyspace-code-prover-server -sources
file_name -main-generator -functions-called-in-loop all

See Also
Initialization functions (-functions-called-before-loop) | Termination
functions (-functions-called-after-loop) | Verify model generated code
(-main-generator)

 Step functions (-functions-called-in-loop)

2-259

Termination functions (-functions-called-
after-loop)
Specify functions that the generated main must call after the cyclic code loop

Description
Use this option only for code generated from Simulink models.

Specify functions that the generated main must call after the cyclic code ends.

Set Option
User interface (desktop products only): In your project configuration, the option is
available on the Code Prover Verification node.

Command line: Use the option -functions-called-after-loop. See “Command-
Line Information” on page 2-261.

Settings
No Default

Click to add a field. Enter function name.

If you use the scope resolution operator to specify the function from a particular
namespace, enter the fully qualified name, for instance, myClass::myMethod(int). If
the function does not have a parameter, use an empty parenthesis, for instance,
myClass::myMethod().

Tips
• If you specify a function for the option Initialization functions (-

functions-called-before-loop), you cannot specify it for this option.

2 Option Descriptions

2-260

Command-Line Information
Parameter: -functions-called-after-loop
No Default
Value: function1[,function2[,...]]
Example (Bug Finder): polyspace-bug-finder -sources file_name -main-
generator -functions-called-after-loop myfunc
Example (Code Prover): polyspace-code-prover -sources file_name -main-
generator -functions-called-after-loop myfunc
Example (Bug Finder Server): polyspace-bug-finder-server -sources
file_name -main-generator -functions-called-after-loop myfunc
Example (Code Prover Server): polyspace-code-prover-server -sources
file_name -main-generator -functions-called-after-loop myfunc

See Also
Initialization functions (-functions-called-before-loop) | Step
functions (-functions-called-in-loop) | Verify model generated code (-
main-generator)

 Termination functions (-functions-called-after-loop)

2-261

Parameters (-variables-written-before-
loop)
Specify variables that the generated main must initialize before the cyclic code loop

Description
Use this option only for code generated from Simulink models.

Specify variables that the generated main must initialize before the cyclic code loop
begins. Before the loop begins, Polyspace considers these variables to have any value
allowed by their type.

Set Option
User interface (desktop products only): In your project configuration, the option is
available on the Code Prover Verification node.

Command line: Use the option -variables-written-before-loop. See “Command-
Line Information” on page 2-263.

Settings
Default: none

none
The generated main does not initialize variables.

all
The generated main initializes all variables except those declared with keyword
const.

2 Option Descriptions

2-262

custom

The generated main only initializes variables that you specify. Click to add a field.
Enter variable name. For C++ class members, use the syntax
className::variableName.

Command-Line Information
Parameter: -variables-written-before-loop
Value: none | all | custom=variable1[,variable2[,...]]
Default: public
Example (Bug Finder): polyspace-bug-finder -sources file_name -main-
generator -variables-written-before-loop all
Example (Code Prover): polyspace-code-prover -sources file_name -main-
generator -variables-written-before-loop all
Example (Bug Finder Server): polyspace-bug-finder-server -sources
file_name -main-generator -variables-written-before-loop all
Example (Code Prover Server): polyspace-code-prover-server -sources
file_name -main-generator -variables-written-before-loop all

See Also
Inputs (-variables-written-in-loop) | Verify model generated code (-
main-generator)

 Parameters (-variables-written-before-loop)

2-263

Inputs (-variables-written-in-loop)
Specify variables that the generated main must initialize in the cyclic code loop

Description
Use this option only for code generated from Simulink models.

Specify variables that the generated main must initialize at the beginning of every
iteration of the cyclic code loop. At the beginning of every loop iteration, Polyspace
considers these variables to have any value allowed by their type.

Set Option
User interface (desktop products only): In your project configuration, the option is
available on the Code Prover Verification node.

Command line: Use the option -variables-written-in-loop. See “Command-Line
Information” on page 2-265.

Settings
Default: none

none
The generated main does not initialize variables.

all
The generated main initializes all variables except those declared with keyword
const.

custom

The generated main only initializes variables that you specify. Click to add a field.
Enter variable name. For C++ class members, use the syntax
className::variableName.

2 Option Descriptions

2-264

Command-Line Information
Parameter: -variables-written-in-loop
Value: none | all | custom=variable1[,variable2[,...]]
Default: none
Example (Bug Finder): polyspace-bug-finder -sources file_name -main-
generator -variables-written-in-loop all
Example (Code Prover): polyspace-code-prover -sources file_name -main-
generator -variables-written-in-loop all
Example (Bug Finder Server): polyspace-bug-finder-server -sources
file_name -main-generator -variables-written-in-loop all
Example (Code Prover Server): polyspace-code-prover-server -sources
file_name -main-generator -variables-written-in-loop all

See Also
Parameters (-variables-written-before-loop) | Verify model generated
code (-main-generator)

 Inputs (-variables-written-in-loop)

2-265

Verify module or library (-main-generator)
Generate a main function if source files are modules or libraries that do not contain a
main

Description
This option affects a Code Prover analysis only.

Specify that Polyspace must generate a main function if it does not find one in the source
files.

Set Option
User interface (desktop products only): In your project configuration, the option is on
the Code Prover Verification node.

Command line: Use the option -main-generator. See “Command-Line Information” on
page 2-267.

For the analogous option for model generated code, see Verify model generated
code (-main-generator).

Why Use This Option
Use this option if you are verifying a module or library. A Code Prover analysis requires a
main function. When verifying a module or library, your code might not have a main.

When you use this option, Code Prover generates a main function if one does not exist. If
a main exists, the analysis uses the existing main.

Settings
 On (default)

Polyspace generates a main function if it does not find one in the source files. The
generated main:

2 Option Descriptions

2-266

1 Initializes variables specified by Variables to initialize (-main-
generator-writes-variables).

2 Before calling other functions, calls the functions specified by Initialization
functions (-functions-called-before-main).

3 In all possible orders, calls the functions specified by Functions to call (-
main-generator-calls).

4 (C++ only) Calls class methods specified by Class (-class-analyzer) and
Functions to call within the specified classes (-class-
analyzer-calls).

If you do not specify the function and variable options above, the generated main:

• Initializes all global variables except those declared with keywords const and
static.

• In all possible orders, calls all functions that are not called anywhere in the source
files. Polyspace considers that global variables can be written between two
consecutive function calls. Therefore, in each called function, global variables
initially have the full range of values allowed by their type.

 Off
Polyspace stops if a main function is not present in the source files.

Tips
• If a main function is present in your source files, the verification uses that main

function, irrespective of whether you enable or disable this option.

The option is relevant only if a main function is not present in your source files.
• If you specify multitasking options, the verification ignores your specifications for

main generation. Instead, the verification introduces an empty main function.

For more information on the multitasking options, see “Configuring Polyspace
Multitasking Analysis Manually”.

Command-Line Information
Parameter: -main-generator

 Verify module or library (-main-generator)

2-267

Default: Off
Example (Code Prover): polyspace-code-prover -sources file_name -main-
generator
Example (Code Prove Server): polyspace-code-prover-server -sources
file_name -main-generator

See Also
Class (-class-analyzer) | Functions to call (-main-generator-calls) |
Functions to call within the specified classes (-class-analyzer-
calls) | Initialization functions (-functions-called-before-main) |
Variables to initialize (-main-generator-writes-variables) | Verify
whole application

Topics
“Prepare Scripts for Polyspace Analysis”
“Verify C Application Without main Function” (Polyspace Code Prover Server)

2 Option Descriptions

2-268

Consider volatile qualifier on fields (-
consider-volatile-qualifier-on-fields)
Assume that volatile qualified structure fields can have all possible values at any point
in code

Description
This option affects a Code Prover analysis only.

Specify that the verification must take into account the volatile qualifier on fields of a
structure.

Set Option
User interface (desktop products only): In your project configuration, the option is
available on the Verification Assumptions node.

Command line: Use the option -consider-volatile-qualifier-on-fields. See
“Command-Line Information” on page 2-272.

Why Use This Option
The volatile qualifier on a variable indicates that the variable value can change
between successive operations even if you do not explicitly change it in your code. For
instance, if var is a volatile variable, the consecutive operations res = var; res
=var; can result in two different values of var being read into res.

Use this option so that the verification emulates the volatile qualifier for structure
fields. If you select this option, the software assumes that a volatile structure field has
a full range of values at any point in the code. The range is determined only by the data
type of the structure field.

 Consider volatile qualifier on fields (-consider-volatile-qualifier-on-fields)

2-269

Settings
 On

The verification considers the volatile qualifier on fields of a structure.

In the following example, the verification considers that the field val1 can have all
values allowed for the int type at any point in the code.

struct myStruct {
 volatile int val1;
 int val2;
};

Even if you write a specific value to val1 and read the variable in the next operation,
the variable read results in any possible value.

struct myStruct myStructInstance;
myStructInstance.val1 = 1;
assert (myStructInstance.val1 == 1); // Assertion can fail

 Off (default)
The verification ignores the volatile qualifier on fields of a structure.

In the following example, the verification ignores the qualifier on field val1.

struct myStruct {
 volatile int val1;
 int val2;
};

If you write a specific value to val1 and read the variable in the next operation, the
variable read results in that specific value.

struct myStruct myStructInstance;
myStructInstance.val1 = 1;
assert (myStructInstance.val1 == 1); // Assertion passes

Tips
• If your volatile fields do not represent values read from hardware and you do not

expect their values to change between successive operations, disable this option. You

2 Option Descriptions

2-270

are using the volatile qualifier for some other reason and the verification does not
need to consider full range for the field values.

• If you enable this option, the number of red, gray, and green checks in your code can
decrease. The number of orange checks can increase.

In the following example, a red or green check changes to orange or a gray check goes
away when the option is used. Considering the volatile qualifier changes the check
color. These examples use the following structure definition:

struct myStruct {
 volatile int field1;
 int field2;
};

Color
Without
Option

Result Without Option Result With Option

Green void main(){
 struct myStruct structVal;
 structVal.field1 = 1;
 assert(structVal.field1 == 1);
}

void main(){
 struct myStruct structVal;
 structVal.field1 = 1;
 assert(structVal.field1 ==1);
}

Red void main(){
 struct myStruct structVal;
 structVal.field1 = 1;
 assert(structVal.field1 != 1);
}

void main(){
 struct myStruct structVal;
 structVal.field1 = 1;
 assert(structVal.field1 !=1);
}

Gray void main(){
 struct myStruct structVal;
 structVal.field1 = 1;
 if (structVal.field1 != 1)
 {
 /* Perform operation */
 }
}

void main(){
 struct myStruct structVal;
 structVal.field1 = 1;
 if (structVal.field1 != 1)
 {
 /* Perform operation */
 }
}

• In C++ code, the option also applies to class members.

 Consider volatile qualifier on fields (-consider-volatile-qualifier-on-fields)

2-271

Command-Line Information
Parameter: -consider-volatile-qualifier-on-fields
Default: Off
Example (Code Prover): polyspace-code-prover -sources file_name -
consider-volatile-qualifier-on-fields
Example (Code Prover Server): polyspace-code-prover-server -sources
file_name -consider-volatile-qualifier-on-fields

See Also

Topics
“Prepare Scripts for Polyspace Analysis”

Introduced in R2016b

2 Option Descriptions

2-272

Float rounding mode (-float-rounding-
mode)
Specify rounding modes to consider when determining the results of floating point
arithmetic

Description
This option affects a Code Prover analysis only.

Specify the rounding modes to consider when determining the results of floating-point
arithmetic.

Set Option
User interface (desktop products only): In your project configuration, the option is
available on the Verification Assumptions node.

Command line: Use the option -float-rounding-mode. See “Command-Line
Information” on page 2-276.

Why Use This Option
The default verification uses the round-to-nearest mode.

Use the rounding mode all if your code contains routines such as fesetround to specify
a rounding mode other than round-to-nearest. Although the verification ignores the
fesetround specification, it considers all rounding modes including the rounding mode
that you specified. Alternatively, for targets that can use extended precision (for instance,
using the flag -mfpmath=387), use the rounding mode all. However, for your Polyspace
analysis results to agree with run-time behavior, you must prevent use of extended
precision through a flag such as -ffloat-store.

Otherwise, continue to use the default rounding mode to-nearest. Because all rounding
modes are considered when you specify all, you can have many orange Overflow checks
resulting from overapproximation.

 Float rounding mode (-float-rounding-mode)

2-273

http://www.cplusplus.com/reference/cfenv/fesetround/

Settings
Default: to-nearest

to-nearest
The verification assumes the round-to-nearest mode.

all
The verification assumes all rounding modes for each operation involving floating-
point variables. The following rounding modes are considered: round-to-nearest,
round-towards-zero, round-towards-positive-infinity, and round-towards-negative-
infinity.

Tips
• The Polyspace analysis uses floating-point arithmetic that conforms to the IEEE® 754

standard. For instance, the arithmetic uses floating point instructions present in the
SSE instruction set. The GNU C flag -mfpmath=sse enforces use of this instruction
set. If you use the GNU C compiler with this flag to compile your code, your Polyspace
analysis results agree with your run-time behavior.

However, if your code uses extended precision, for instance using the GNU C flag -
mfpmath=387, your Polyspace analysis results might not agree with your run-time
behavior in some corner cases. See some examples of these corner cases in
codeprover_limitations.pdf in polyspaceroot\polyspace\verifier
\code_prover_desktop. Here, polyspaceroot is the Polyspace installation folder,
for instance, C:\Program Files\Polyspace\R2019a.

To prevent use of extended precision, on targets without SSE support, you can use a
flag such as -ffloat-store. For your Polyspace analysis, use all for rounding mode
to account for double rounding.

• The Overflow check uses the rounding modes that you specify. For instance, the
following table shows the difference in the result of the check when you change your
rounding modes.

2 Option Descriptions

2-274

Rounding mode: to-nearest Rounding mode: all
If results of floating-point operations are
rounded to nearest values:

• In the first addition operation, eps1
is just large enough that the value
nearest to FLT_MAX + eps1 is
greater than FLT_MAX. The Overflow
check is red.

• In the second addition operation,
eps2 is just small enough that the
value nearest to FLT_MAX + eps2 is
FLT_MAX. The Overflow check is
green.

#include <float.h>
#define eps1 0x1p103
#define eps2 0x0.FFFFFFp103

float func(int ch) {
 float left_op = FLT_MAX;
 float right_op_1 = eps1, \
right_op_2 = eps2;
 switch(ch) {
 case 1:
 return (left_op +\
right_op_1);
 case 2:
 return (left_op +\
right_op_2);
 default:
 return 0;
 }
}

Besides to-nearest mode, the Overflow
check also considers other rounding
modes.

• In the first addition operation, in to-
nearest mode, the value nearest to
FLT_MAX + eps1 is greater than
FLT_MAX, so the addition overflows.
But if rounded towards negative
infinity, the result is FLT_MAX, so the
addition does not overflow.
Combining these two rounding
modes, the Overflow check is
orange.

• In the second addition operation, in
to-nearest mode, the value nearest to
FLT_MAX + eps2 is FLT_MAX, so
the addition does not overflow. But if
rounded towards positive infinity, the
result is greater than FLT_MAX, so
the addition overflows. Combining
these two rounding modes, the
Overflow check is orange.

#include <float.h>
#define eps1 0x1p103
#define eps2 0x0.FFFFFFp103

float func(int ch) {
 float left_op = FLT_MAX;
 float right_op_1 = eps1, \
 right_op_2 = eps2;
 switch(ch) {
 case 1:
 return (left_op +\
right_op_1);
 case 2:
 return (left_op +\
right_op_2);

 Float rounding mode (-float-rounding-mode)

2-275

Rounding mode: to-nearest Rounding mode: all
 default:
 return 0;
 }
}

If you set the rounding mode to all and obtain an orange Overflow check, to
determine how the overflow can occur, consider all rounding modes.

Command-Line Information
Parameter: -float-rounding-mode
Value: to-nearest | all
Default: to-nearest
Example (Code Prover): polyspace-code-prover -sources file_name -float-
rounding-mode all
Example (Code Prover Server): polyspace-code-prover-server -sources
file_name -float-rounding-mode all

See Also
Overflow

Topics
“Prepare Scripts for Polyspace Analysis”

Introduced in R2016a

2 Option Descriptions

2-276

Respect types in fields (-respect-types-
in-fields)
Do not cast nonpointer fields of a structure to pointers

Description
This option affects a Code Prover analysis only.

Specify that structure fields not declared initially as pointers will not be cast to pointers
later.

Set Option
User interface (desktop products only): In your project configuration, the option is
available on the Verification Assumptions node.

Command line: Use the option -respect-types-in-fields. See “Command-Line
Information” on page 2-278.

Why Use This Option
Use this option to identify and forbid casts from nonpointer structure fields to pointers.

Settings
 On

The verification assumes that structure fields not declared initially as pointers will not
be cast to pointers later.

 Respect types in fields (-respect-types-in-fields)

2-277

Code with option off Code with option on
struct {
 unsigned int x1;
 unsigned int x2;
} S;

void funct(void) {
 int var, *tmp;
 S.x1 = &var;
 tmp = (int*)S.x1;
 *tmp = 1;
 assert(var==1);
}

In this example, the fields of S are
declared as integers but S.x1 is cast to
a pointer. With the option turned off,
Polyspace allows the cast.

struct {
 unsigned int x1;
 unsigned int x2;
} S;

void funct(void) {
 int var, *tmp;
 S.x1 = &var;
 tmp = (int*)S.x1;
 *tmp = 1;
 assert(var==1);
}

In this example, the fields of S are
declared as integers but S.x1 is cast to
a pointer. With the option turned on,
Polyspace ignores the cast. Therefore, it
ignores the initialization of var through
the pointer (int*)S.x1 and produces
a red Non-initialized local variable
error when var is read.

 Off (default)
The verification assumes that structure fields can be cast to pointers even when they
are not declared as pointers.

Command-Line Information
Parameter: -respect-types-in-fields
Default: Off
Example (Code Prover): polyspace-code-prover -sources file_name -
respect-types-in-fields
Example (Code Prover Server): polyspace-code-prover-server -sources
file_name -respect-types-in-fields

See Also
Non-initialized local variable | Respect types in global variables (-
respect-types-in-globals)

2 Option Descriptions

2-278

Topics
“Prepare Scripts for Polyspace Analysis”

 Respect types in fields (-respect-types-in-fields)

2-279

Respect types in global variables (-respect-
types-in-globals)
Do not cast nonpointer global variables to pointers

Description
This option affects a Code Prover analysis only.

Specify that global variables not declared initially as pointers will not be cast to pointers
later.

Set Option
User interface (desktop products only): In your project configuration, the option is
available on the Verification Assumptions node.

Command line: Use the option -respect-types-in-globals. See “Command-Line
Information” on page 2-281.

Why Use This Option
Use this option to identify and forbid casts from nonpointer global variables to pointers.

Settings
 On

The verification assumes that global variables not declared initially as pointers will
not be cast to pointers later.

 Off (default)
The verification assumes that global variables can be cast to pointers even when they
are not declared as pointers.

2 Option Descriptions

2-280

Tips
If you select this option, the number of checks in your code can change. You can use this
option and the change in results to identify cases where you cast nonpointer variables to
pointers.

For instance, in the following example, when you select the option, the results have one
less orange check and one more red check.

Code with option off Code with option on
int global;
void main(void) {
 int local;
 global = (int)&local;
 (int)global = 5;
 assert(local==5);
}

In this example, global is declared as an
int variable but cast to a pointer. With the
option turned off, Polyspace allows the cast.

int global;
void main(void) {
 int local;
 global = (int)&local;
 (int)global = 5;
 assert(local==5);
}

In this example, global is declared as an
int variable but cast to a pointer. With the
option turned on, Polyspace ignores the
cast. Therefore, it ignores the initialization
of local through the pointer
(int*)global and produces a red Non-
initialized local variable error when
local is read.

Command-Line Information
Parameter: -respect-types-in-globals
Default: Off
Example (Code Prover): polyspace-code-prover -sources file_name -
respect-types-in-globals
Example (Code Prover Server): polyspace-code-prover-server -sources
file_name -respect-types-in-globals

See Also
Non-initialized local variable | Respect types in fields (-respect-
types-in-fields)

 Respect types in global variables (-respect-types-in-globals)

2-281

Topics
“Prepare Scripts for Polyspace Analysis”

2 Option Descriptions

2-282

Consider environment pointers as unsafe (-
stubbed-pointers-are-unsafe)
Specify that environment pointers can be unsafe to dereference unless constrained
otherwise

Description
This option affects a Code Prover analysis only.

Specify that the verification must consider environment pointers as unsafe unless
otherwise constrained. Environment pointers are pointers that can be assigned values
outside your code.

Environment pointers include:

• Global or extern pointers.
• Pointers returned from stubbed functions.

A function is stubbed if your code does not contain the function definition or you
override a function definition by using the option Functions to stub (-
functions-to-stub).

• Pointer parameters of functions whose calls are generated by the software.

A function call is generated if you verify a module or library and the module or library
does not have an explicit call to the function. You can also force a function call to be
generated with the option Functions to call (-main-generator-calls).

Set Option
User interface (desktop products only): In your project configuration, the option is
available on the Verification Assumptions node.

Command line: Use the option -stubbed-pointers-are-unsafe. See “Command-
Line Information” on page 2-286.

 Consider environment pointers as unsafe (-stubbed-pointers-are-unsafe)

2-283

Why Use This Option
Use this option so that the verification makes more conservative assumptions about
pointers from external sources.

If you specify this option, the verification considers that environment pointers can have a
NULL value. If you read an environment pointer without checking for NULL, the Illegally
dereferenced pointer check shows a potential error in orange. The message associated
with the orange check shows the pointer can be NULL.

Settings
 On

The verification considers that environment pointers can have a NULL value.

 Off (default)
The verification considers that environment pointers:

• Cannot have a NULL value.
• Points within allowed bounds.

Tips
• Enable this option during the integration phase. In this phase, you provide complete

code for verification. Even if an orange check originates from external sources, you
are likely to place protections against unsafe pointers from such sources. For instance,
if you obtain a pointer from an unknown source, you check the pointer for NULL value.

Disable this option during the unit testing phase. In this phase, you focus on errors
originating from your unit.

• If you are verifying code implementation of AUTOSAR runnables, Code Prover
assumes that pointer arguments to runnables and pointers returned from Rte_
functions are not NULL. You cannot use this option to change the assumption. See
“Run Polyspace on AUTOSAR Code with Conservative Assumptions” (Polyspace Code
Prover).

• If you enable this option, the number of orange checks in your code might increase.

2 Option Descriptions

2-284

Environment Pointers Safe Environment Pointers Unsafe
The Illegally dereferenced pointer
check is green. The verification assumes
that env_ptr is not NULL and any
dereference is within allowed bounds.
The verification assumes that the result
of the dereference is full range. For
instance, in this case, the return value
has the full range of type int.

 int func (int *env_ptr) {
 return *env_ptr;
 }

The Illegally dereferenced pointer
check is orange. The verification
assumes that env_ptr can be NULL.

 int func (int *env_ptr) {
 return *env_ptr;
 }

If you enable this option, the number of gray checks might decrease.

Environment Pointers Safe Environment Pointers Unsafe
The verification assumes that env_ptr
is not NULL. The if condition is always
true and the else block is unreachable.

 #include <stdlib.h>
 int func (int *env_ptr) {
 if(env_ptr!=NULL)
 return *env_ptr;
 else
 return 0;
 }

The verification assumes that env_ptr
can be NULL. The if condition is not
always true and the else block can be
reachable.

 #include <stdlib.h>
 int func (int *env_ptr) {
 if(env_ptr!=NULL)
 return *env_ptr;
 else
 return 0;
 }

• Instead of considering all environment pointers as safe or unsafe, you can individually
constrain some of the environment pointers. See the description of Initialize Pointer
in “External Constraints for Polyspace Analysis” (Polyspace Code Prover).

When you individually constrain a pointer, you first specify an Init Mode, and then
specify through the Initialize Pointer option whether the pointer is Null, Not Null,
or Maybe Null. Depending on the Init Mode, you can either override the global
specification for all environment pointers or not.

• If you set the Init Mode of the pointer to INIT or PERMANENT, your selection for
Initialize Pointer overrides your specification for this option. For instance, if you
specify Not NULL for an environment pointer ptr, the verification assumes that

 Consider environment pointers as unsafe (-stubbed-pointers-are-unsafe)

2-285

ptr is not NULL even if you specify that environment pointers must be considered
unsafe.

• If you set the Init Mode to MAIN GENERATOR, the verification uses your
specification for this option.

For pointers returned from stubbed functions, the option MAIN GENERATOR is not
available. If you override the global specification for such a pointer through the
Initialize Pointer option in constraints, you cannot toggle back to the global
specification without changing the Initialize Pointer option too.

• If you disable this option, the verification considers that dereferences at all pointer
depths are valid.

For instance, all the dereferences are considered valid in this code:

int*** stub(void);

void func2() {
 int ***ptr = stub();
 int **ptr2 = *ptr;
 int *ptr3 = *ptr2;
}

Command-Line Information
Parameter: -stubbed-pointers-are-unsafe
Default: Off
Example (Code Prover): polyspace-code-prover -sources file_name -
stubbed-pointers-are-unsafe
Example (Code Prover Server): polyspace-code-prover-server -sources
file_name -stubbed-pointers-are-unsafe

See Also
Constraint setup (-data-range-specifications)

Topics
“Prepare Scripts for Polyspace Analysis”
“Specify External Constraints”
“External Constraints for Polyspace Analysis”

2 Option Descriptions

2-286

Introduced in R2016b

 Consider environment pointers as unsafe (-stubbed-pointers-are-unsafe)

2-287

Allow negative operand for left shifts (-
allow-negative-operand-in-shift)
Allow left shift operations on a negative number

Description
This option affects a Code Prover analysis only.

Specify that the verification must allow left shift operations on a negative number.

Set Option
User interface (desktop products only): In your project configuration, the option is on
the Check Behavior node.

Command line: Use the option -allow-negative-operand-in-shift. See
“Command-Line Information” on page 2-289.

Why Use This Option
According to the C99 standard (sec 6.5.7), the result of a left shift operation on a negative
number is undefined. Following the standard, the verification produces a red check on left
shifts of negative numbers.

If your compiler has a well-defined behavior for left shifts of negative numbers, set this
option. Note that allowing left shifts of negative numbers can reduce the cross-compiler
portability of your code.

Settings
 On

The verification allows shift operations on a negative number, for instance, -2 << 2.

2 Option Descriptions

2-288

 Off (default)
If a shift operation is performed on a negative number, the verification generates an
error.

Command-Line Information
Parameter: -allow-negative-operand-in-shift
Default: Off
Example (Code Prover): polyspace-code-prover -sources file_name -allow-
negative-operand-in-shift
Example (Code Prover Server): polyspace-code-prover-server -sources
file_name -allow-negative-operand-in-shift

See Also
Invalid shift operations

Topics
“Prepare Scripts for Polyspace Analysis”

 Allow negative operand for left shifts (-allow-negative-operand-in-shift)

2-289

Consider non finite floats (-allow-non-
finite-floats)
Enable an analysis mode that incorporates infinities and NaNs

Description
Enable an analysis mode that incorporates infinities and NaNs for floating point
operations.

Set Option
User interface (desktop products only): In your project configuration, the option is on
the Check Behavior node.

Command line: Use the option -allow-non-finite-floats. See “Command-Line
Information” on page 2-293.

Why Use This Option
Code Prover

By default, the analysis does not incorporate infinities and NaNs. For instance, the
analysis terminates the execution thread where a division by zero occurs and does not
consider that the result could be infinite.

If you use functions such as isinf or isnan and account for infinities and NaNs in your
code, set this option. When you set this option and a division by zero occurs for instance,
the execution thread continues with infinity as the result of the division.

Set this option alone if you are sure that you have accounted for infinities and NaNs in
your code. Using the option alone effectively disables many numerical checks on floating
point operations. If you have generally accounted for infinities and NaNs, but you are not
sure that you have considered all situations, set these additional options:

• Infinities (-check-infinite): Use warn-first.

2 Option Descriptions

2-290

• NaNs (-check-nan): Use warn-first.

Bug Finder

If the analysis flags comparisons using isinf or isnan as dead code, use this option. By
default, a Bug Finder analysis does not incorporate infinities and NaNs.

Settings
 On

The analysis allows infinities and NaNs. For instance, in this mode:

• The analysis assumes that floating-point operations can produce results such as
infinities and NaNs.

By using options Infinities (-check-infinite) and NaNs (-check-nan),
you can choose to highlight operations that produce nonfinite results and stop the
execution threads where the nonfinite results occur. These options are not
available for a Bug Finder analysis.

• The analysis assumes that floating-point variables with unknown values can have
any value allowed by their type, including infinite or NaN. Floating-point variables
with unknown values include volatile variables and return values of stubbed
functions.

 Off (default)
The analysis does not allow infinities and NaNs. For instance, in this mode:

• The Code Prover analysis produces a red check on a floating-point operation that
produces an infinity or a NaN as the only possible result on all execution paths.
The verification produces an orange check on a floating-point operation that can
potentially produce an infinity or NaN.

• The Code Prover analysis assumes that floating-point variables with unknown
values are full-range but finite.

• The Bug Finder analysis shows comparisons with infinity using isinf as dead
code.

 Consider non finite floats (-allow-non-finite-floats)

2-291

Tips
• The IEEE 754 Standard allows special quantities such as infinities and NaN so that you

can handle certain numerical exceptions without aborting the code. Some
implementations of the C standard support infinities and NaN.

• If your compiler supports infinities and NaNs and you account for them explicitly in
your code, use this option so that the verification also allows them.

For instance, if a division results in infinity, in your code, you specify an alternative
action. Therefore, you do not want the verification to highlight division operations
that result in infinity.

• If your compiler supports infinities and NaNs but you are not sure if you account for
them explicitly in your code, use this option so that the verification incorporates
infinities and NaNs. Use the options -check-nan and -check-infinite with
argument warn so that the verification highlights operations that result in infinities
and NaNs, but does not stop the execution thread. These options are not available
for a Bug Finder analysis.

• If you run a Code Prover analysis and use this option, checkers for overflow, division
by zero and other numerical run-time errors are disabled. See “Numerical Checks”
(Polyspace Code Prover Access).

If you run a Bug Finder analysis and use this option:

• The checkers for overflow and division by zero are disabled. See “Numerical
Defects” (Polyspace Bug Finder Access).

• The checker Floating point comparison with equality operators can
show false positives.

• If you select this option, the number and type of Code Prover checks in your code can
change.

For instance, in the following example, when you select the option, the results have
one less red check and three more green checks.

2 Option Descriptions

2-292

Infinities and NaNs Not Allowed Infinities and NaNs Allowed
Code Prover produces a Division by
zero error and stops verification.

double func(void) {
 double x=1.0/0.0;
 double y=1.0/x;
 double z=x-x;
 return z;
}

If you select this option, Code Prover
does not check for a Division by zero
error.

double func(void) {
 double x=1.0/0.0;
 double y=1.0/x;
 double z=x-x;
 return z;
}

The analysis assumes that dividing by
zero results in:

• Value of x equal to Inf
• Value of y equal to 0.0
• Value of z equal to NaN

In your analysis results in the Polyspace
user interface, if you place your cursor
on y and z, you can see the nonfinite
values Inf and NaN respectively in the
tooltip.

• You cannot run the Automatic Orange Tester in Code Prover if you incorporate non-
finites in your analysis.

Command-Line Information
Parameter: -allow-non-finite-floats
Default: Off
Example (Bug Finder): polyspace-bug-finder -sources file_name -allow-
non-finite-floats
Example (Code Prover): polyspace-code-prover -sources file_name -allow-
non-finite-floats
Example (Bug Finder Server): polyspace-bug-finder-server -sources
file_name -allow-non-finite-floats
Example (Code Prover Server): polyspace-code-prover-server -sources
file_name -allow-non-finite-floats

 Consider non finite floats (-allow-non-finite-floats)

2-293

See Also
“Numerical Defects” (Polyspace Bug Finder Access) | “Numerical Checks” (Polyspace
Code Prover Access) | Infinities (-check-infinite) | NaNs (-check-nan)

Topics
“Prepare Scripts for Polyspace Analysis”

Introduced in R2016a

2 Option Descriptions

2-294

Infinities (-check-infinite)
Specify how to handle floating-point operations that result in infinity

Description
This option affects a Code Prover analysis only.

Specify how the analysis must handle floating-point operations that result in infinities.

Set Option
User interface (desktop products only): In your project configuration, the option is on
the Check Behavior node. See “Dependencies” on page 2-297 for other options you must
also enable.

Command line: Use the option -check-infinite. See “Command-Line Information” on
page 2-297.

Why Use This Option
Use this option to enable detection of floating-point operations that result in infinities.

If you specify that the analysis must consider nonfinite floats, by default, the analysis does
not flag these operations. Use this option to detect these operations while still
incorporating nonfinite floats.

Settings
Default: allow

allow
The verification does not produce a check on the operation.

For instance, in the following code, there is no Overflow check.

 Infinities (-check-infinite)

2-295

double func(void) {
 double x=1.0/0.0;
 return x;
}

warn-first
The verification produces a check on the operation. The check determines if the result
of the operation is infinite when the operands themselves are not infinite. The
verification does not terminate the execution thread that produces infinity.

If the verification detects an operation that produces infinity as the only possible
result on all execution paths and the operands themselves are never infinite, the
check is red. If the operation can potentially result in infinity, the check is orange.

For instance, in the following code, there is a nonblocking Overflow check for infinity.

double func(void) {
 double x=1.0/0.0;
 return x;
}

Even though the Overflow check on the / operation is red, the verification continues.
For instance, a green Non-initialized local variable check appears on x in the
return statement.

forbid
The verification produces a check on the operation and terminates the execution
thread that produces infinity.

If the check is red, the verification does not continue for the remaining code in the
same scope as the check. If the check is orange, the verification continues but
removes from consideration the variable values that produced infinity.

For instance, in the following code, there is a blocking Overflow check for infinity.

double func(void) {
 double x=1.0/0.0;
 return x;
}

The verification stops because the Overflow check on the / operation is red. For
instance, a Non-initialized local variable check does not appear on x in the return
statement.

2 Option Descriptions

2-296

Dependencies
To use this option, you must enable the verification mode that incorporates infinities and
NaNs. See Consider non finite floats (-allow-non-finite-floats).

Command-Line Information
Parameter: -check-infinite
Value: allow | warn-first | forbid
Default: allow
Example (Code Prover): polyspace-code-prover -sources file_name -check-
infinite forbid
Example (Code Prover Server): polyspace-code-prover-server -sources
file_name -check-infinite forbid

See Also
Polyspace Analysis Options
Consider non finite floats (-allow-non-finite-floats) | NaNs (-check-
nan)

Polyspace Results
Overflow

Topics
“Prepare Scripts for Polyspace Analysis”

Introduced in R2016a

 Infinities (-check-infinite)

2-297

NaNs (-check-nan)
Specify how to handle floating-point operations that result in NaN

Description
This option affects a Code Prover analysis only.

Specify how the analysis must handle floating-point operations that result in NaN.

Set Option
User interface (desktop products only): In your project configuration, the option is on
the Check Behavior node. See “Dependencies” on page 2-300 for other options you must
also enable.

Command line: Use the option -check-nan. See “Command-Line Information” on page
2-300.

Why Use This Option
Use this option to enable detection of floating-point operations that result in NaN-s.

If you specify that the analysis must consider nonfinite floats, by default, the analysis does
not flag these operations. Use this option to detect these operations while still
incorporating nonfinite floats.

Settings
Default: allow

allow
The verification does not produce a check on the operation.

For instance, in the following code, there is no Invalid operation on floats check.

2 Option Descriptions

2-298

double func(void) {
 double x=1.0/0.0;
 double y=x-x;
 return y;
}

warn-first
The verification produces a check on the operation. The check determines if the result
of the operation is NaN when the operands themselves are not NaN. For instance, the
check flags the operation val1 + val2 only if the result can be NaN when both
val1 and val2 are not NaN. The verification does not terminate the execution thread
that produces NaN.

If the verification detects an operation that produces NaN as the only possible result
on all execution paths and the operands themselves are never NaN, the check is red.
If the operation can potentially result in NaN, the check is orange.

For instance, in the following code, there is a nonblocking Invalid operation on
floats check for NaN.

double func(void) {
 double x=1.0/0.0;
 double y=x-x;
 return y;
}

Even though the Invalid operation on floats check on the - operation is red, the
verification continues. For instance, a green Non-initialized local variable check
appears on y in the return statement.

forbid
The verification produces a check on the operation and terminates the execution
thread that produces NaN.

If the check is red, the verification does not continue for the remaining code in the
same scope as the check. If the check is orange, the verification continues but
removes from consideration the variable values that produced a NaN.

For instance, in the following code, there is a blocking Invalid operation on floats
check for NaN.

double func(void) {
 double x=1.0/0.0;

 NaNs (-check-nan)

2-299

 double y=x-x;
 return y;
}

The verification stops because the Invalid operation on floats check on the -
operation is red. For instance, a Non-initialized local variable check does not
appear on y in the return statement.

The Invalid operation on floats check for NaN also appears on the / operation and
is green.

Dependencies
To use this option, you must enable the verification mode that incorporates infinities and
NaNs. See Consider non finite floats (-allow-non-finite-floats).

Command-Line Information
Parameter: -check-nan
Value: allow | warn-first | forbid
Default: allow
Example (Code Prover): polyspace-code-prover -sources file_name -check-
nan forbid
Example (Code Prover Server): polyspace-code-prover-server -sources
file_name -check-nan forbid

See Also
Polyspace Analysis Options
Consider non finite floats (-allow-non-finite-floats) | Infinities (-
check-infinite)

Polyspace Results
Invalid operation on floats

Topics
“Prepare Scripts for Polyspace Analysis”

2 Option Descriptions

2-300

Introduced in R2016a

 NaNs (-check-nan)

2-301

Enable pointer arithmetic across fields (-
allow-ptr-arith-on-struct)
Allow arithmetic on pointer to a structure field so that it points to another field

Description
This option affects a Code Prover analysis only.

Specify that a pointer assigned to a structure field can point outside its bounds as long as
it points within the structure.

Set Option
User interface (desktop products only): In your project configuration, the option is on
the Check Behavior node. See “Dependency” on page 2-303 for other options you must
also enable.

Command line: Use the option -allow-ptr-arith-on-struct. See “Command-Line
Information” on page 2-304.

Why Use This Option
Use this option to relax the check for illegally dereferenced pointers. Once you assign a
pointer to a structure field, you can perform pointer arithmetic and use the result to
access another structure field.

Settings
 On

A pointer assigned to a structure field can point outside the bounds imposed by the
field as long as it points within the structure. For instance, in the following code,
unless you use this option, the verification will produce a red Illegally
dereferenced pointer check:

2 Option Descriptions

2-302

void main(void) {
struct S {char a; char b; int c;} x;
char *ptr = &x.b;
ptr ++;
*ptr = 1; // Red on the dereference, because ptr points outside x.b
}

 Off (default)
A pointer assigned to a structure field can point only within the bounds imposed by
the field.

Tips
• The verification does not allow a pointer with negative offset values. This behavior

occurs irrespective of whether you choose the option Enable pointer arithmetic
across fields.

• Using this option can slightly increase the number of orange checks. The option
relaxes the constraint that a pointer to a structure field cannot point to other fields of
the structure. In exchange for relaxing this constraint, the verification loses precision
on the boundary of fields within a structure and treats the structure as a whole.
Pointer dereferences that were previously green can now turn orange.

Use this option if you follow a policy of reviewing red checks only and you need to
work around red checks from pointer arithmetic within a structure.

• Before using this option, consider the costs of using pointer arithmetic across different
fields of a structure.

Unlike an array, members of a structure can have different data types. For efficient
storage, structures use padding to accommodate this difference. When you increment
a pointer pointing to a structure member, you might not point to the next member.
When you dereference this pointer, you cannot rely on what you are reading or writing
to.

Dependency
This option is available only if you set Source code language (-lang) to C.

 Enable pointer arithmetic across fields (-allow-ptr-arith-on-struct)

2-303

Command-Line Information
Parameter: -allow-ptr-arith-on-struct
Default: Off
Example (Code Prover): polyspace-code-prover -sources file_name -allow-
ptr-arith-on-struct
Example (Code Prover Server): polyspace-code-prover-server -sources
file_name -allow-ptr-arith-on-struct

See Also
Allow incomplete or partial allocation of structures (-size-in-
bytes) | Illegally dereferenced pointer

Topics
“Prepare Scripts for Polyspace Analysis”

2 Option Descriptions

2-304

Detect stack pointer dereference outside
scope (-detect-pointer-escape)
Find cases where a function returns a pointer to one of its local variables

Description
This option affects a Code Prover analysis only.

Specify that the verification must detect cases where you access a variable outside its
scope via pointers. Such an access can happen, for example, when a function returns a
pointer to a local variable and you dereference the pointer outside the function. The
dereference causes undefined behavior because the local variable that the pointer points
to does not live outside the function.

Set Option
User interface (desktop products only): In your project configuration, the option is on
the Check Behavior node.

Command line: Use the option -detect-pointer-escape. See “Command-Line
Information” on page 2-307.

Why Use This Option
Use this option to enable detection of pointer escape.

Settings
 On

The Illegally dereferenced pointer check performs an additional task, besides its
usual specifications. When you dereference a pointer, the check also determines if you
are accessing a variable outside its scope through the pointer. The check is:

 Detect stack pointer dereference outside scope (-detect-pointer-escape)

2-305

• Red, if all the variables that the pointer points to are accessed outside their scope.

For instance, you dereference a pointer ptr in a function func that is called twice
in your code. In both calls, when you perform the dereference *ptr, ptr is
pointing to variables outside their scope. Therefore, the Illegally dereferenced
pointer check is red.

• Orange, if only some of the variables that the pointer points to are accessed
outside their scope.

• Green, if none of the variables that the pointer points to are accessed outside their
scope, and other requirements of the check are also satisfied.

In the following code, if you enable this option, Polyspace Code Prover produces a red
Illegally dereferenced pointer check on *ptr. Otherwise, the Illegally
dereferenced pointer check on *ptr is green.

void func2(int *ptr) {
 *ptr = 0;
}

int* func1(void) {
 int ret = 0;
 return &ret ;
}
void main(void) {
 int* ptr = func1() ;
 func2(ptr) ;
}

The Result Details pane displays a message indicating that ret is accessed outside
its scope.

2 Option Descriptions

2-306

 Off (default)
When you dereference a pointer, the Illegally dereferenced pointer check does not
check for whether you are accessing a variable outside its scope. The check is green
even if the pointer dereference is outside the variable scope, as long as it satisfies
requirements:

• The pointer is not NULL.
• The pointer points within the memory buffer.

Command-Line Information
Parameter: -detect-pointer-escape
Default: Off
Example (Code Prover): polyspace-code-prover -sources file_name -
detect-pointer-escape
Example (Code Prover Server): polyspace-code-prover-server -sources
file_name -detect-pointer-escape

See Also
Illegally dereferenced pointer

Topics
“Prepare Scripts for Polyspace Analysis”

Introduced in R2015a

 Detect stack pointer dereference outside scope (-detect-pointer-escape)

2-307

Disable checks for non-initialization (-
disable-initialization-checks)
Disable checks for non-initialized variables and pointers

Description
This option affects a Code Prover analysis only.

Specify that Polyspace Code Prover must not check for non-initialization in your code.

Set Option
User interface (desktop products only): In your project configuration, the option is on
the Check Behavior node.

Command line: Use the option -disable-initialization-checks. See “Command-
Line Information” on page 2-310.

Why Use This Option
Use this option if you do not want to detect instances of non-initialized variables.

Settings
 On

Polyspace Code Prover does not perform the following checks:

• Non-initialized local variable: Local variable is not initialized before
being read.

• Non-initialized variable: Variable other than local variable is not initialized
before being read.

• Non-initialized pointer: Pointer is not initialized before being read.

2 Option Descriptions

2-308

• Return value not initialized: C function does not return value when
expected.

Polyspace assumes that, at declaration:

• Variables have full-range of values allowed by their type.
• Pointers can be NULL-valued or point to a memory block at an unknown offset.

 Off (default)
Polyspace Code Prover checks for non-initialization in your code. The software
displays red checks if, for instance, a variable is not initialized and orange checks if a
variable is initialized only on some execution paths.

Tips
• If you select this option, the software does not report most violations of MISRA C:2004

rule 9.1, and MISRA C:2012 Rule 9.1.
• If you select this option, the number and type of orange checks in your code can

change.

For instance, the following table shows an additional orange check with the option
enabled.

 Disable checks for non-initialization (-disable-initialization-checks)

2-309

Checks for Non-initialization
Enabled

Checks for Non-initialization
Disabled

void func(int flag) {
 int var1,var2;
 if(flag==0) {
 var1=var2;
 }
 else {
 var1=0;
 }
 var2=var1 + 1;
}

In this example, the software produces:

• A red Non-initialized local
variable check on var2 in the if
branch. The verification continues as
if only the else branch of the if
statement exists.

• A green Non-initialized local
variable check on var1 in the last
statement. var1 has the assigned
value 0.

• A green Overflow check on the +
operation.

void func(int flag) {
 int var1,var2;
 if(flag==0) {
 var1=var2;
 }
 else {
 var1=0;
 }
 var2=var1 + 1;
}

In this example, the software:

• Does not produce Non-initialized
local variable checks. At
initialization, the software assumes
that var2 has full range of int
values. Following the if statement,
because the software considers both
if branches, it assumes that var1
also has full range of int values.

• Produces an orange Overflow check
on the + operation. For instance, if
var1 has the maximum int value,
adding 1 to it can cause an overflow.

Command-Line Information
Parameter: -disable-initialization-checks
Default: Off
Example (Code Prover): polyspace-code-prover -sources file_name -
disable-initialization-checks
Example (Code Prover Server): polyspace-code-prover-server -sources
file_name -disable-initialization-checks

2 Option Descriptions

2-310

See Also

Topics
“Prepare Scripts for Polyspace Analysis”

 Disable checks for non-initialization (-disable-initialization-checks)

2-311

Permissive function pointer calls (-
permissive-function-pointer)
Allow type mismatch between function pointers and the functions they point to

Description
This option affects a Code Prover analysis only.

Specify that the verification must allow function pointer calls where the type of the
function pointer does not match the type of the function.

Set Option
User interface (desktop products only): In your project configuration, the option is on
the Check Behavior node. See “Dependency” on page 2-315 for other options you must
also enable.

Command line: Use the option -permissive-function-pointer. See “Command-
Line Information” on page 2-315.

Why Use This Option
By default, Code Prover does not recognize calls through function pointers when a type
mismatch occurs. Fix the type mismatch whenever possible.

Use this option if:

• You cannot fix the type mismatch, and
• The analysis does not cover a significant portion of your code because calls via

function pointers are not recognized.

2 Option Descriptions

2-312

Settings
 On

The verification must allow function pointer calls where the type of the function
pointer does not match the type of the function. For instance, a function declared as
int f(int*) can be called by a function pointer declared as int (*fptr)
(void*).

Only type mismatches between pointer types are allowed. Type mismatches between
nonpointer types cause compilation errors. For instance, a function declared as int
f(int) cannot be called by a function pointer declared as int (*fptr)(double).

 Off (default)
The verification must require that the argument and return types of a function pointer
and the function it calls are identical.

Type mismatches are detected with the check Correctness condition.

Tips
• With sources that use function pointers extensively, enabling this option can cause loss

in performance. This loss occurs because the verification has to consider more
execution paths.

• Using this option can increase the number of orange checks. Some of these orange
checks can reveal a real issue with the code.

Consider these examples where a type mismatch occurs between the function pointer
type and the function that it points to:

• In this example, the function pointer obj_fptr has an argument that is a pointer
to a three-element array. However, it points to a function whose corresponding
argument is a pointer to a four-element array. In the body of foo, four array
elements are read and incremented. The fourth element does not exist and the ++
operation reads a meaningless value.

 Permissive function pointer calls (-permissive-function-pointer)

2-313

typedef int array_three_elements[3];
typedef void (*fptr)(array_three_elements*);

typedef int array_four_elements[4];
void foo(array_four_elements*);

void main() {
 array_three_elements arr[3] = {0,0,0};
 array_three_elements *ptr;
 fptr obj_fptr;

 ptr = &arr;
 obj_fptr = &foo;

 //Call via function pointer
 obj_fptr(&ptr);
}

void foo(array_four_elements* x) {
 int i = 0;
 int *current_pos;

 for(i = 0; i< 4; i++) {
 current_pos = (*x) + i;
 (*current_pos)++;
 }
}

Without this option, an orange Correctness condition check appears on the
call obj_fptr(&ptr) and the function foo is not verified. If you use this option,
the body of foo contains several orange checks. Review the checks carefully and
make sure that the type mismatch does not cause issues.

• In this example, the function pointer has an argument that is a pointer to a
structure with three float members. However, the corresponding function
argument is a pointer to an unrelated structure with one array member. In the
function body, the strlen function is used assuming the array member. Instead the
strlen call reads the float members and can read meaningless values, for
instance, values stored in the structure padding.

2 Option Descriptions

2-314

#include <string.h>
struct point {
 float x;
 float y;
 float z;
};
struct message {
 char msg[10] ;
};
void foo(struct message*);

void main() {
 struct point pt = {3.14, 2048.0, -1.0} ;
 void (*obj_fptr)(struct point *) ;

 obj_fptr = &foo;

 //Call via function pointer
 obj_fptr(&pt);
}

void foo(struct message* x) {
 int y = strlen(x->msg) ;
}

Without this option, an orange Correctness condition check appears on the
call obj_fptr(&pt) and the function foo is not verified. If you use this option, the
function contains an orange check on the strlen call. Review the check carefully
and make sure that the type mismatch does not cause issues.

Dependency
This option is available only if you set Source code language (-lang) to C.

Command-Line Information
Parameter: -permissive-function-pointer
Default: Off
Example (Code Prover): polyspace-code-prover -sources file_name -lang c
-permissive-function-pointer

 Permissive function pointer calls (-permissive-function-pointer)

2-315

Example (Code Prover Server): polyspace-code-prover-server -sources
file_name -lang c -permissive-function-pointer

See Also
Correctness condition

Topics
“Prepare Scripts for Polyspace Analysis”

2 Option Descriptions

2-316

Overflow mode for signed integer (-signed-
integer-overflows)
Specify whether result of overflow is wrapped around or truncated

Description
This option affects a Code Prover analysis only.

Specify whether Polyspace flags signed integer overflows and whether the analysis wraps
the result of an overflow or restricts it to its extremum value.

Set Option
User interface (desktop products only): In the Configuration pane, the option is on the
Check Behavior node under Code Prover Verification.

Command line: Use the option -signed-integer-overflows. See “Command-Line
Information” (Polyspace Code Prover).

Why Use This Option
Use this option to specify whether to check for signed integer overflows and to specify the
assumptions the analysis makes following an overflow.

Settings
Default: forbid

forbid
Polyspace flags signed integer overflows. If the Overflow check on an operation is:

• Red, Polyspace does not analyze the remaining code in the current scope.
• Orange, Polyspace analyzes the remaining code in the current scope. Polyspace

considers that:

 Overflow mode for signed integer (-signed-integer-overflows)

2-317

• After a positive Overflow, the result of the operation has an upper bound. This
upper bound is the maximum value allowed by the type of the result.

• After a negative Overflow, the result of the operation has a lower bound. This
lower bound is the minimum value allowed by the type of the result.

This behavior conforms to the ANSI C (ISO C++) standard.

In the following code, j has values in the range [1..231-1] before the orange
overflow. Polyspace considers that j has even values in the range
[2 .. 2147483646] after the overflow. Polyspace does not analyze the printf()
statement after the red overflow.

#include<stdio.h>

int getVal();

void func1()
{
 int i = 1;
 i = i << 30;
 // Result of * operation overflows
 i = i * 2;
 // Remaing code in current scope not analyzed
 printf("%d", i);
}
void func2()
{

 int j = getVal();
 if (j > 0) {
 // Range of j: [1..231-1]
 // Result of * operation may overflow
 j = j * 2;
 // Range of j: even values in [2 .. 2147483646]
 printf("%d", j);
 }
}

allow
Polyspace does not flag signed integer overflows. If an operation results in an
overflow, Polyspace analyzes the remaining code but wraps the result of the overflow.

2 Option Descriptions

2-318

In this code, the analysis does not flag any overflow in the code. However, the range
of j wraps around to even values in the range [-231..2] or [2..231-2] and the
value of i wraps around to -231.

#include<stdio.h>

int getVal();

void func1()
{
 int i = 1;
 i = i << 30;
 // i = 230
 i = i * 2;
 // i = -231
 printf("%d", i);
}
void func2()
{

 int j = getVal();
 if (j > 0) {
 // Range of j: [1..231-1]
 j = j * 2;
 // Range of j: even values in [-231..2] or [2..231-2]
 printf("%d", j);
 }
}

warn-with-wrap-around
Polyspace flags signed integer overflows. If an operation results in an overflow,
Polyspace analyzes the remaining code but wraps the result of the overflow.

In the following code, j has values in the range [1..231-1] before the orange
overflow. Polyspace considers that j has even values in the range [-231..2] or
[2..231-2] after the overflow.

Similarly, i has value 230 before the red overflow and value -231 after it .

 Overflow mode for signed integer (-signed-integer-overflows)

2-319

#include<stdio.h>

int getVal();

void func1()
{
 int i = 1;
 i = i << 30;
 // i = 230
 // Result of * operation overflows
 i = i * 2;
 // i = -231
 printf("%d", i);
}
void func2()
{

 int j = getVal();
 if (j > 0) {
 // Range of j: [1..231-1]
 // Result of * operation may overflow
 j = j * 2;
 // Range of j: even values in [-231..2] or [2..231-2]
 printf("%d", j);
 }
}

Tips
• To check for overflows on conversions from unsigned to signed integers of the same

size, set Overflow mode for unsigned integer to forbid or warn-with-wrap-
around. If you allow unsigned integer overflows, Polyspace does not flag overflows on
conversions and wraps the result of an overflow, even if you check for signed integer
overflows.

• In Polyspace Code Prover, overflowing signed constants are wrapped around. This
behavior cannot be changed by using the options. If you want to detect overflows with
signed constants, use the Polyspace Bug Finder checker Integer constant
overflow.

2 Option Descriptions

2-320

Command-Line Information
Parameter: -signed-integer-overflows
Value: forbid | allow | warn-with-wrap-around
Default: forbid
Example (Code Prover): polyspace-code-prover -sources file_name -
signed-integer-overflows allow
Example (Code Prover Server): polyspace-code-prover-server -sources
file_name -signed-integer-overflows allow

See Also
Overflow | Overflow mode for unsigned integer (-unsigned-integer-
overflows)

Topics
“Prepare Scripts for Polyspace Analysis”

Introduced in R2018b

 Overflow mode for signed integer (-signed-integer-overflows)

2-321

Overflow mode for unsigned integer (-
unsigned-integer-overflows)
Specify whether result of overflow is wrapped around or truncated

Description
This option affects a Code Prover analysis only.

Specify whether Polyspace flags unsigned integer overflows and whether the analysis
wraps the result of an overflow or restricts it to its extremum value.

Set Option
User interface (desktop products only): In the Configuration pane, the option is on the
Check Behavior node under Code Prover Verification.

Command line: Use the option -unsigned-integer-overflows. See “Command-Line
Information” (Polyspace Code Prover).

Why Use This Option
Use this option to specify whether to check for unsigned integer overflows and to specify
the assumptions the analysis makes following an overflow.

Settings
Default: allow

forbid
Polyspace flags unsigned integer overflows. If the Overflow check on an operation is:

• Red, Polyspace does not analyze the remaining code in the current scope.
• Orange, Polyspace analyzes the remaining code in the current scope. Polyspace

considers that:

2 Option Descriptions

2-322

• After a positive Overflow, the result of the operation has an upper bound. This
upper bound is the maximum value allowed by the type of the result.

• After a negative Overflow, the result of the operation has a lower bound. This
lower bound is the minimum value allowed by the type of the result.

In the following code, j has values in the range [1..232-1] before the orange
overflow. Polyspace considers that j has even values in the range
[2 .. 4294967294] after the overflow. Polyspace does not analyze the printf()
statement after the red overflow.

#include<stdio.h>

unsigned int getVal();

void func1()
{
 unsigned int i = 1;
 i = i << 31;
 // Result of * operation overflows
 i = i * 2;
 // Remaing code in current scope not analyzed
 printf("%u", i);
}
void func2()
{

 unsigned int j = getVal();
 if (j > 0) {
 // Range of j: [1..232-1]
 // Result of * operation may overflow
 j = j * 2;
 // Range of j: even values in [2 .. 4294967294]
 printf("%u", j);
 }
}

allow
Polyspace does not flag unsigned integer overflows. If an operation results in an
overflow, Polyspace analyzes the remaining code but wraps the result of the overflow.
For instance, MAX_INT + 1 wraps to MIN_INT. This behavior conforms to the ANSI C
(ISO C++) standard.

 Overflow mode for unsigned integer (-unsigned-integer-overflows)

2-323

In this code, the analysis does not flag any overflow in the code. However, the range
of j wraps around to even values in the range [0..232-2]] and the value of i wraps
around to 0.

#include<stdio.h>

unsigned int getVal();

void func1()
{
 unsigned int i = 1;
 i = i << 31;
 // i = 231
 i = i * 2;
 // i = 0
 printf("%u", i);
}
void func2()
{

 unsigned int j = getVal();
 if (j > 0) {
 // Range of j: [1..232-1]
 j = j * 2;
 // Range of j: even values in [0 .. 4294967294]
 printf("%u", j);
 }
}

warn-with-wrap-around
Polyspace flags unsigned integer overflows. If an operation results in an overflow,
Polyspace analyzes the remaining code but wraps the result of the overflow. For
instance, MAX_INT + 1 wraps to MIN_INT.

In the following code, j has values in the range [1..232-1] before the orange
overflow. Polyspace considers that j has even values in the range [0 ..
4294967294] after the overflow.

Similarly, i has value 231 before the red overflow and value 0 after it.

2 Option Descriptions

2-324

#include<stdio.h>

unsigned int getVal();

void func1()
{
 unsigned int i = 1;
 i = i << 31;
 // i = 231
 i = i * 2;
 // i = 0
 printf("%u", i);
}
void func2()
{

 unsigned int j = getVal();
 if (j > 0) {
 // Range of j: [1..232-1]
 j = j * 2;
 // Range of j: even values in [0 .. 4294967294]
 printf("%u", j);
 }
}

Tips
• To check for overflows on conversions from unsigned to signed integers of the same

size, set Overflow mode for unsigned integer to forbid or warn-with-wrap-
around. If you allow unsigned integer overflows, Polyspace does not flag overflows on
conversions and wraps the result of an overflow, even if you check for signed integer
overflows.

• In Polyspace Code Prover, overflowing unsigned constants are wrapped around. This
behavior cannot be changed by using the options. If you want to detect overflows with
unsigned constants, use the Polyspace Bug Finder checker Unsigned integer
constant overflow.

Command-Line Information
Parameter: -unsigned-integer-overflows

 Overflow mode for unsigned integer (-unsigned-integer-overflows)

2-325

Value: forbid | allow | warn-with-wrap-around
Default: allow
Example (Code Prover): polyspace-code-prover -sources file_name -
unsigned-integer-overflows allow
Example (Code Prover Server): polyspace-code-prover-server -sources
file_name -unsigned-integer-overflows allow

See Also
Overflow | Overflow mode for signed integer (-signed-integer-
overflows)

Topics
“Prepare Scripts for Polyspace Analysis”

Introduced in R2018b

2 Option Descriptions

2-326

Allow incomplete or partial allocation of
structures (-size-in-bytes)
Allow a pointer with insufficient memory buffer to point to a structure

Description
This option affects a Code Prover analysis only.

Specify that the verification must allow dereferencing a pointer that points to a structure
but has a sufficient buffer for only some of the structure’s fields.

This type of pointer results when a pointer to a smaller structure is cast to a pointer to a
larger structure. The pointer resulting from the cast has sufficient buffer for only some
fields of the larger structure.

Set Option
User interface (desktop products only): In your project configuration, the option is on
the Check Behavior node.

Command line: Use the option -size-in-bytes. See “Command-Line Information” on
page 2-329.

Why Use This Option
Use this option to relax the check for illegally dereferenced pointers. You can point to a
structure even when the buffer allowed for the pointer is not sufficient for all the
structure fields.

 Allow incomplete or partial allocation of structures (-size-in-bytes)

2-327

Settings
 On

When a pointer with insufficient buffer is dereferenced,Polyspace does not produce an
Illegally dereferenced pointer error, as long as the dereference occurs within
allowed buffer.

For instance, in the following code, the pointer p has sufficient buffer for the first two
fields of the structure BIG. Therefore, with the option on, Polyspace considers that
the first two dereferences are valid. The third dereference takes p outside its allowed
buffer. Therefore, Polyspace produces an Illegally dereferenced pointer error on
the third dereference.

#include <stdlib.h>

typedef struct _little { int a; int b; } LITTLE;
typedef struct _big { int a; int b; int c; } BIG;

void main(void) {
 BIG *p = malloc(sizeof(LITTLE));

 if (p!= ((void *) 0)) {
 p->a = 0 ;
 p->b = 0 ;
 p->c = 0 ; // Red IDP check
 }
}

 Off (default)
Polyspace does not allow dereferencing a pointer to a structure if the pointer does not
have sufficient buffer for all fields of the structure. It produces an Illegally
dereferenced pointer error the first time you dereference the pointer.

For instance, in the following code, even though the pointer p has sufficient buffer for
the first two fields of the structure BIG, Polyspace considers that dereferencing p is
invalid.

#include <stdlib.h>

typedef struct _little { int a; int b; } LITTLE;
typedef struct _big { int a; int b; int c; } BIG;

2 Option Descriptions

2-328

void main(void) {
 BIG *p = malloc(sizeof(LITTLE));

 if (p!= ((void *) 0)) {
 p->a = 0 ; // Red IDP check
 p->b = 0 ;
 p->c = 0 ;
 }
}

Tips
• If you do not turn on this option, you cannot point to the field of a partially allocated

structure.

For instance, in the preceding example, if you do not turn on the option and perform
the assignment

int *ptr = &(p->a);

Polyspace considers that the assignment is invalid. If you dereference ptr, it produces
an Illegally dereferenced pointer error.

• Using this option can slightly increase the number of orange checks.

Command-Line Information
Parameter: -size-in-bytes
Default: Off
Example (Code Prover): polyspace-code-prover -sources file_name -size-
in-bytes
Example (Code Prover Server): polyspace-code-prover-server -sources
file_name -size-in-bytes

See Also
Enable pointer arithmetic across fields (-allow-ptr-arith-on-struct)
| Illegally dereferenced pointer

 Allow incomplete or partial allocation of structures (-size-in-bytes)

2-329

Topics
“Prepare Scripts for Polyspace Analysis”

2 Option Descriptions

2-330

Subnormal detection mode (-check-
subnormal)
Detect operations that result in subnormal floating-point values

Description
This option affects a Code Prover analysis only.

Specify that the verification must check floating-point operations for subnormal results.

Set Option
User interface (desktop products only): In your project configuration, the option is on
the Check Behavior node.

Command line: Use the option -check-subnormal. See “Command-Line Information”
on page 2-334.

Why Use This Option
Use this option to detect floating-point operations that result in subnormal values.

Subnormal numbers have magnitudes less than the smallest floating-point number that
can be represented without leading zeros in the significand. The presence of subnormal
numbers indicates loss of significant digits. This loss can accumulate over subsequent
operations and eventually result in unexpected values. Subnormal numbers can also slow
down the execution on targets without hardware support.

Settings
Default: allow

allow
The verification does not check operations for subnormal results.

 Subnormal detection mode (-check-subnormal)

2-331

forbid
The verification checks for subnormal results.

The verification stops the execution path with the subnormal result and prevents
subnormal values from propagating further. Therefore, in practice, you see only the
first occurrence of the subnormal value.

warn-all
The verification checks for subnormal results and highlights all occurrences of
subnormal values. Even if a subnormal result comes from previous subnormal values,
the result is highlighted.

The verification continues even if the check is red.
warn-first

The verification checks for subnormal results but only highlights first occurrences of
subnormal values. If a subnormal value propagates to further subnormal results,
those subsequent results are not highlighted.

The verification continues even if the check is red.

For details of the result colors in each mode, see Subnormal float.

Tips
• If you want to see only those operations where a subnormal value originates from non-

subnormal operands, use the warn-first mode.

For instance, in the following code, arg1 and arg2 are unknown. The verification
assumes that they can take all values allowed for the type double. This assumption
can lead to subnormal results from certain operations. If you use the warn-first
mode, the first operation causing the subnormal result is highlighted.

2 Option Descriptions

2-332

warn-all warn-first
void func (double arg1, double arg2)
{
 double difference1 = arg1 - arg2;
 double difference2 = arg1 - arg2;
 double val1 = difference1 * 2;
 double val2 = difference2 * 2;
}

In this example, all four operations can
have subnormal results. The four checks
for subnormal results are orange.

void func (double arg1, double arg2)
{
 double difference1 = arg1 - arg2;
 double difference2 = arg1 - arg2;
 double val1 = difference1 * 2;
 double val2 = difference2 * 2;
}

In this example, difference1 and
difference2 can be subnormal if arg1
and arg2 are sufficiently close. The first
two checks for subnormal results are
orange. val1 and val2 cannot be
subnormal unless difference1 and
difference2 are subnormal. The last
two checks for subnormal results are
green.

Through red/orange checks, you see
only the first instance where a
subnormal value appears. You do not see
red/orange checks from those
subnormal values propagating to
subsequent operations.

• If you want to see where a subnormal value originates and do not want to see
subnormal results arising from the same cause more than once, use the forbid mode.

For instance, in the following code, arg1 and arg2 are unknown. The verification
assumes that they can take all values allowed for the type double. This assumption
can lead to subnormal results for arg1-arg2. If you use the forbid mode and
perform the operation arg1-arg2 twice in succession, only the first operation is
highlighted. The second operation is not highlighted because the subnormal result for
the second operation arises from the same cause as the first operation.

 Subnormal detection mode (-check-subnormal)

2-333

warn-all forbid
void func (double arg1, double arg2)
{
 double difference1 = arg1 - arg2;
 double difference2 = arg1 - arg2;
 double val1 = difference1 * 2;
 double val2 = difference2 * 2;
}

In this example, all four operations can
have subnormal results. The four checks
for subnormal results are orange.

void func (double arg1, double arg2)
{
 double difference1 = arg1 - arg2;
 double difference2 = arg1 - arg2;
 double val1 = difference1 * 2;
 double val2 = difference2 * 2;
}

In this example, difference1 can be
subnormal if arg1 and arg2 are
sufficiently close. The first check for
subnormal results is orange. Following
this check, the verification excludes
from consideration:

• The close values of arg1 and arg2
that led to the subnormal value of
difference1.

In the subsequent operation arg1 -
arg2, the check is green and
difference2 is not subnormal. The
result of the check on difference2
* 2 is green for the same reason.

• The subnormal value of
difference1.

In the subsequent operation
difference1 * 2, the check is
green.

• You cannot run the Automatic Orange Tester if you check for subnormals in your
verification.

Command-Line Information
Parameter: -check-subnormal
Value: allow | warn-first | warn-all | forbid
Default: allow

2 Option Descriptions

2-334

Example (Code Prover): polyspace-code-prover -sources file_name -check-
subnormal forbid
Example (Code Prover Server): polyspace-code-prover-server -sources
file_name -check-subnormal forbid

See Also
Polyspace Results
Subnormal float

Topics
“Prepare Scripts for Polyspace Analysis”

Introduced in R2016b

 Subnormal detection mode (-check-subnormal)

2-335

Detect uncalled functions (-uncalled-
function-checks)
Detect functions that are not called directly or indirectly from main or another entry
point function

Description
This option affects a Code Prover analysis only.

Detect functions that are not called directly or indirectly from main or another entry
point function during run-time.

Set Option
User interface (desktop products only): In your project configuration, the option is on
the Check Behavior node.

Command line: Use the option -uncalled-function-checks. See “Command-Line
Information” on page 2-337.

Why Use This Option
Typically, after verification, the Dashboard pane shows functions that are not called
during verification. However, you do not see them in your analysis results or reports. You
cannot comment on them or justify them.

If you want to see these uncalled functions in your analysis results and reports, use this
option.

Settings
Default: none

2 Option Descriptions

2-336

none
The verification does not generate checks for uncalled functions.

never-called
The verification generates checks for functions that are defined but not called.

called-from-unreachable
The verification generates checks for functions that are defined and called from an
unreachable part of the code.

all
The verification generates checks for functions that are:

• Defined but not called
• Defined and called from an unreachable part of the code.

Command-Line Information
Parameter: -uncalled-function-checks
Value: none | never-called | called-from-unreachable | all
Default: none
Example (Code Prover): polyspace-code-prover -sources file_name -
uncalled-function-checks all
Example (Code Prover Server): polyspace-code-prover-server -sources
file_name -uncalled-function-checks all

See Also
Function not reachable | Function not called

Topics
“Prepare Scripts for Polyspace Analysis”

 Detect uncalled functions (-uncalled-function-checks)

2-337

Sensitivity context (-context-sensitivity)
Store call context information to identify function call that caused errors

Description
This option affects a Code Prover analysis only.

Specify the functions for which the verification must store call context information. If the
function is called multiple times, using this option helps you to distinguish between the
different calls.

Set Option
User interface (desktop products only): In your project configuration, the option is
available on the Precision node.

Command line: Use the option -context-sensitivity. See “Command-Line
Information” (Polyspace Code Prover).

Why Use This Option
Suppose a function is called twice in your code. The check color on each operation in the
function body is a combined result of both calls. If you want to distinguish between the
colors in the two calls, use this option.

For instance, if a function contains a red or orange check and a green check on the same
operation for two different calls, the software combines the contexts and displays an
orange check on the operation. If you use this option, you can identify the color of the
check for each call.

Settings
Default: none

2 Option Descriptions

2-338

none
The software does not store call context information for functions.

auto
The software stores call context information for checks in:

• Functions that form the leaves of the call tree. These functions are called by other
functions, but do not call functions themselves.

• Small functions. The software uses an internal threshold to determine whether a
function is small.

custom
The software stores call context information for functions that you specify. To enter

the name of a function, click .

Command-Line Information
Parameter: -context-sensitivity
Value: function1[,function2,...]
Default: none
Example (Code Prover): polyspace-code-prover -sources file_name -
context-sensitivity myFunc1,myFunc2
Example (Code Prover Server): polyspace-code-prover-server -sources
file_name -context-sensitivity myFunc1,myFunc2

To allow the software to determine which functions receive call context storage, use the
option -context-sensitivity-auto.

See Also

Topics
“Prepare Scripts for Polyspace Analysis”

 Sensitivity context (-context-sensitivity)

2-339

Improve precision of interprocedural
analysis (-path-sensitivity-delta)
Avoid certain verification approximations for code with fewer lines

Description
This option affects a Code Prover analysis only.

For smaller code, use this option to improve the precision of cross-functional analysis.

Set Option
User interface (desktop products only): In your project configuration, the option is
available on the Precision node.

Command line: Use the option -path-sensitivity-delta. See “Command-Line
Information” on page 2-341.

Why Use This Option
Use this option to avoid certain software approximations on execution paths. Avoiding
these approximations results in fewer orange checks but a much longer verification time.

For instance, for deep function call hierarchies or nested conditional statements, to
complete verification in a reasonable amount of time, the software combines many
execution paths and stores less information at each stage of verification. If you use this
option, the software stores more information about the execution paths, resulting in a
more precise verification.

Settings
Default: Off

Enter a positive integer to turn on this option.

2 Option Descriptions

2-340

Entering a higher value leads to a greater number of proven results, but also increases
verification time exponentially. For instance, a value of 10 can result in very long
verification times.

Tips
Use this option only when you have less than 1000 lines of code.

Command-Line Information
Parameter: -path-sensitivity-delta
Value: Positive integer
Example (Code Prover): polyspace-code-prover -sources file_name -path-
sensitivity-delta 1
Example (Code Prover Server): polyspace-code-prover-server -sources
file_name -path-sensitivity-delta 1

See Also

Topics
“Prepare Scripts for Polyspace Analysis”

 Improve precision of interprocedural analysis (-path-sensitivity-delta)

2-341

Precision level (-O)
Specify a precision level for the verification

Description
This option affects a Code Prover analysis only.

Specify the precision level that the verification must use.

Set Option
User interface (desktop products only): In your project configuration, the option is
available on the Precision node.

Command line: Use the option -O#, for instance, -O0 or -O1. See “Command-Line
Information” on page 2-343.

Why Use This Option
Higher precision leads to greater number of proven results but also requires more
verification time. Each precision level corresponds to a different algorithm used for
verification.

In most cases, you see the optimal balance between precision and verification time at
level 2.

Settings
Default: 2

0
This option corresponds to a static interval verification.

1
This option corresponds to a complex polyhedron model of domain values.

2 Option Descriptions

2-342

2
This option corresponds to more complex algorithms closely modelling domain values.
The algorithms combine both complex polyhedrons and integer lattices.

3
This option is only suitable for code having less than 1000 lines. Using this option, the
percentage of proven results can be very high.

Tips
For best results in reasonable time, use the default level 2. If the verification takes a long
time, reduce precision. However, the number of unproven checks can increase. Likewise,
to reduce orange checks, you can improve your precision. But the verification can take
significantly longer time.

Command-Line Information
Parameter: -O0 | -O1 | -O2 | -O3
Default: -O2
Example (Code Prover): polyspace-code-prover -sources file_name -O1
Example (Code Prover Server): polyspace-code-prover-server -sources
file_name -O1

See Also
Specific precision (-modules-precision) | Verification level (-to)

Topics
“Prepare Scripts for Polyspace Analysis”

 Precision level (-O)

2-343

Specific precision (-modules-precision)
Specify source files you want to verify at higher precision than the remaining verification

Description
This option affects a Code Prover analysis only.

Specify source files that you want to verify at a precision level higher than that for the
entire verification.

Set Option
User interface (desktop products only): In your project configuration, the option is
available on the Precision node. See “Dependency” on page 2-345 for other options you
must also enable.

Command line: Use the option -modules-precision. See “Command-Line
Information” on page 2-345.

Why Use This Option
If a specific file is verified imprecisely leading to many orange checks in the file and
elsewhere, you can improve the precision for that file.

Note that increasing precision also increases verification time.

Settings
Default: All files are verified with the precision you specified using Precision >
Precision level.

Click to enter the name of a file without the extension .c and the corresponding
precision level.

2 Option Descriptions

2-344

Dependency
This option is available only if you set Source code language (-lang) to C or C-CPP.

Command-Line Information
Parameter: -modules-precision
Value: file:O0 | file:O1 | file:O2 | file:O3
Example (Code Prover): polyspace-code-prover -sources file_name -O1 -
modules-precision My_File:02
Example (Code Prover Server): polyspace-code-prover-server -sources
file_name -O1 -modules-precision My_File:02

See Also
Precision level (-O)

Topics
“Prepare Scripts for Polyspace Analysis”

 Specific precision (-modules-precision)

2-345

Verification level (-to)
Specify number of times the verification process runs on your code

Description
This option affects a Code Prover analysis only.

Specify the number of times the Polyspace verification process runs on your source code.
Each run can lead to greater number of proven results but also requires more verification
time.

Set Option
User interface (desktop products only): In your project configuration, the option is
available on the Precision node.

Command line: Use the option -to. See “Command-Line Information” on page 2-349.

Why Use This Option
There are many reasons you might want to increase or decrease the verification level. For
instance:

• Coding rules are checked early during the compilation phase, with some exception
only. If you check for coding rules alone, you can lower the verification level. See
“Check for Coding Standard Violations”.

• If you see many orange checks after verification, try increasing the verification level.
However, increasing the verification level also increases verification time.

In most cases, you see the optimal balance between precision and verification time at
level 2.

Settings
Default: Software Safety Analysis level 2

2 Option Descriptions

2-346

Source Compliance Checking
Polyspace completes coding rules checking at the end of the compilation phase.

Software Safety Analysis level 0
The verification process runs once on your source code.

Software Safety Analysis level 1
The verification process runs twice on your source code.

Software Safety Analysis level 2
The verification process runs three time on your source code. Use this option for most
accurate results in reasonable time.

Software Safety Analysis level 3
The verification process runs four times on your source code.

Software Safety Analysis level 4
The verification process runs five times on your source code.

other
If you use this option, Polyspace verification will make 20 passes unless you stop it
manually.

Tips
• Use a higher verification level for fewer orange checks.

Difference between Level 0 and 1

The following example illustrates the difference between Software Safety
Analysis level 0 and Software Safety Analysis level 1:

 Verification level (-to)

2-347

Software Safety Analysis Level 0 Software Safety Analysis Level 1
#include <stdlib.h>

void ratio (float x, float *y)
{
 *y=(abs(x-*y))/(x+*y);
}

void level1 (float x,
 float y, float *t)
{ float v;
 v = y;
 ratio (x, &y);
 *t = 1.0/(v - 2.0 * x);
}

float level2(float v)
{
 float t;
 t = v;
 level1(0.0, 1.0, &t);
 return t;
}

void main(void)
{
 float r,d;
 d= level2(1.0);
 r = 1.0 / (2.0 - d);
}

#include <stdlib.h>

void ratio (float x, float *y)
{
 *y=(abs(x-*y))/(x+*y);
}

void level1 (float x,
 float y, float *t)
{ float v;
 v = y;
 ratio (x, &y);
 *t = 1.0/(v - 2.0 * x);
}

float level2(float v)
{
 float t;
 t = v;
 level1(0.0, 1.0, &t);
 return t;
}

void main(void)
{
 float r,d;
 d= level2(1.0);
 r = 1.0 / (2.0 - d);
}

In the table, verification produces an orange Division by Zero check during level 0
verification. The check turns green during level 1. The verification acquires more
precise knowledge of x in the higher level.

If a higher verification level fails because the verification runs out of memory, but
results are available at a lower level, Polyspace displays the results from the lower
level.

• For best results, use the option Software Safety Analysis level 2. If the
verification takes too long, use a lower Verification level. Fix red errors and gray
code before rerunning the verification with higher verification levels.

2 Option Descriptions

2-348

• Use the option Other sparingly since it can increase verification time by an
unreasonable amount. Using Software Safety Analysis level 2 provides
optimal verification of your code in most cases.

• If the Verification Level is set to Source Compliance Checking, do not run
verification on a remote server. The source compliance checking, or compilation,
phase takes place on your local computer anyway. Therefore, if you are running
verification only to the end of compilation, run verification on your local computer.

Command-Line Information
Parameter: -to
Value: compile | pass0 | pass1 | pass2 | pass3 | pass4 | other
Default: pass2
Example (Code Prover): polyspace-code-prover -sources file_name -to
pass2
Example (Code Prover Server): polyspace-code-prover-server -sources
file_name -to pass2

You can also use these additional values not available in the user interface:

• C projects: c-to-il (C to intermediate language conversion phase)
• C++ projects: cpp-to-il (C++ to intermediate language conversion phase), cpp-

normalize (C++ normalization phase), cpp-link (C++ link phase)

Use these values only if you have specific reasons to do so. For instance, to generate a
blank constraints (DRS) template for C++ projects, you have to run an analysis upto the
cpp-normalize phase.

See Also

Topics
“Prepare Scripts for Polyspace Analysis”

 Verification level (-to)

2-349

Verification time limit (-timeout)
Specify a time limit on your verification

Description
This option affects a Code Prover analysis only.

Specify a time limit for the verification in hours. If the verification does not complete
within that limit, it stops.

Set Option
User interface (desktop products only): In your project configuration, the option is
available on the Precision node.

Command line: Use the option -timeout. See “Command-Line Information” on page 2-
351.

Why Use This Option
Use this option to impose a time limit on the verification.

By default, if an internal step in the verification lasts for more than 24 hours, the
verification stops. You can use this option to reduce the time limit even further. Note that
you can have verification results despite the verification timing out. For instance, if a step
in Software Safety Analysis level 1 times out, you still get the results from level 0. See
Verification level (-to).

The option is useful only in very specific cases. Suppose your code has certain constructs
that might slow down the verification. To check this, you can impose a time limit on the
verification so that the verification stops if it takes too long.

Typically, Technical Support asks you to use this option as needed.

2 Option Descriptions

2-350

Settings
Enter the time in hours. For fractions of an hour, specify decimal form.

Command-Line Information
Parameter: -timeout
Value: time
Example (Code Prover): polyspace-code-prover -sources file_name -
timeout 5.75
Example (Code Prover Server): polyspace-code-prover-server -sources
file_name -timeout 5.75

See Also

Topics
“Prepare Scripts for Polyspace Analysis”

 Verification time limit (-timeout)

2-351

Inline (-inline)
Specify functions that must be cloned internally for each function call

Description
This option affects a Code Prover analysis only.

Specify the functions that the verification must clone internally for every function call.

Set Option
User interface (desktop products only): In your project configuration, the option is
available on the Scaling node.

Command line: Use the option -inline. See “Command-Line Information” on page 2-
354.

Why Use This Option
Use this option sparingly. Sometimes, using the option helps to work around scaling
issues during verification. If your verification takes too long, Technical Support can ask
you to use this option for certain functions.

Do not use this option to understand results. For instance, suppose a function is called
twice in your code. The check color on each operation in the function body is a combined
result of both calls. If you want to distinguish between the colors in the two calls, use the
option Sensitivity context (-context-sensitivity).

Settings
No Default

Enter function names or choose from a list.

•
Click to add a field and enter the function name.

2 Option Descriptions

2-352

• Click to list functions in your code. Choose functions from the list.

The verification internally clones the function for each call. For instance, if you specify the
function func for inlining and func is called twice, the software creates two copies of
func for verification. The copies are named using the convention
func_pst_inlined_ver where ver is the version number. You see both copies on the
Call Hierarchy pane.

However, for each run-time check in the function body, you see only one color in your
verification results. The semantics of the check color is different from the normal
specification.

Red checks:

• Normally, if a function is called twice and an operation causes a definite error only in
one of the calls, the check color is orange.

• If you use this option, the worst color is shown for the check. Therefore, the check is
red.

Gray checks:

• Normally, if a function is called twice and an if statement branch is unreachable in
only one of the calls, the branch is shown as reachable.

• If you use this option, the worst color is shown for the check. Therefore, the if branch
appears gray.

Do not use this option to understand results. Use this option only if a certain function
causes scaling issues.

Tips
• Use this option to identify the cause of a Non-terminating call error.

• Situation: Sometimes, a red Non-terminating call check can appear on a
function call though a red check does not appear in the function body. The function
body represents all calls to the function. Therefore, if some calls to a function do
not cause an error, an orange check appears in the function body.

• Action: If you use this option, for every function call, there is a corresponding
function body. Therefore, you can trace a red check on a function call to a red
check in the function body.

 Inline (-inline)

2-353

• Using this option can sometimes duplicate a lot of code and lead to scaling problems.
Therefore choose functions to inline carefully.

• Choose functions to inline based on hints provided by the alias verification.
• Do not use this option for entry point functions, including main.
• Using this option can increase the number of gray Unreachable code checks.

For example, in the following code, if you enter max for Inline, you obtain two
Unreachable code checks, one for each call to max.

int max(int a, int b) {
 return a > b ? a : b;
}

void main() {
 int i=3, j=1, k;
 k=max(i,j);
 i=0;
 k=max(i,j);
}

• If you use the keyword inline before a function definition, place the definition in a
header file and call the function from multiple source files, you have the same result as
using the option Inline.

• For C++ code, this option applies to all overloaded methods of a class.

Command-Line Information
Parameter: -inline
Value: function1[,function2[,...]]
No Default
Example (Code Prover): polyspace-code-prover -sources file_name -inline
func1,func2
Example (Code Prover Server): polyspace-code-prover-server -sources
file_name -inline func1,func2

2 Option Descriptions

2-354

See Also

Topics
“Prepare Scripts for Polyspace Analysis”

 Inline (-inline)

2-355

Depth of verification inside structures (-k-
limiting)
Limit the depth of analysis for nested structures

Description
This option affects a Code Prover analysis only.

Specify a limit to the depth of analysis for nested structures.

Set Option
User interface (desktop products only): In your project configuration, the option is
available on the Scaling node.

Command line: Use the option -k-limiting. See “Command-Line Information” on
page 2-357.

Why Use This Option
Use this option if the analysis is slow because your code has a structure that is many
levels deep.

Typically, you see a warning message when a structure with a deep hierarchy is slowing
down the verification.

Settings
Default: Full depth of nested structures is analyzed.

Enter a number to specify the depth of analysis for nested structures. For instance, if you
specify 0, the analysis does not verify a structure inside a structure.

If you specify a number less than 2, the verification could be less precise.

2 Option Descriptions

2-356

Command-Line Information
Parameter: -k-limiting
Value: positive integer
Example (Code Prover): polyspace-code-prover -sources file_name -k-
limiting 3
Example (Code Prover Server): polyspace-code-prover-server -sources
file_name -k-limiting 3

See Also

Topics
“Prepare Scripts for Polyspace Analysis”

 Depth of verification inside structures (-k-limiting)

2-357

Generate report
Specify whether to generate a report after the analysis

Description
Specify whether to generate a report along with analysis results.

Depending on the format you specify, you can view this report using an external software.
For example, if you specify the format PDF, you can view the report in a pdf reader.

Set Option
User interface (desktop products only): In your project configuration, the option is
available on the Reporting node.

Command line: See “Command-Line Information” on page 2-360.

Why Use This Option
You can generate a report from your analysis results for archiving purposes. You can
provide this report to your management or clients as proof of code quality.

Using other analysis options, you can tailor the report content and format for your
specific needs. See Bug Finder and Code Prover report (-report-template)
and Output format (-report-output-format).

Settings
 On

Polyspace generates an analysis report using the template and format you specify.

The report is stored in the Polyspace-Doc subfolder of your results folder.

2 Option Descriptions

2-358

In Polyspace desktop products, to open your results folder from the user interface, on
the Project Browser pane, right-click the results node and select Open Folder with
File Manager.

To change the results folder location, see “Project and Results Folder Contents”
(Polyspace Bug Finder).

On the command-line, the results folder is the argument of the option -results-
dir.

 Off (default)
Polyspace does not generate an analysis report. You can still view your results in the
Polyspace interface.

Tips
This option allows you to specify report generation before starting an analysis.

To generate a report after an analysis is complete, in the user interface of the Polyspace
desktop products, select Reporting > Run Report. Alternatively, at the command line,
use the polyspace-report-generator command.

 Generate report

2-359

After analysis, you can also export the result as a text file for further customization. Use
the option -generate-results-list-file with the polyspace-report-generator
command.

Command-Line Information
There is no command-line option to solely turn on the report generator. However, using
the options -report-template for template and -report-output-format for output
format automatically turns on the report generator.

See Also
Bug Finder and Code Prover report (-report-template) | Output format
(-report-output-format) | polyspace-report-generator

Topics
“Prepare Scripts for Polyspace Analysis”

2 Option Descriptions

2-360

Bug Finder and Code Prover report (-
report-template)
Specify template for generating analysis report

Description
Specify template for generating analysis report.

.rpt files for the report templates are available in polyspaceroot\toolbox
\polyspace\psrptgen\templates\. Here, polyspaceroot is the Polyspace
installation folder, for instance, C:\Program Files\Polyspace\R2019a.

Set Option
User interface (desktop products only): In your project configuration, the option is on
the Reporting node. You have separate options for Bug Finder and Code Prover analysis.
See “Dependencies” on page 2-368 for other options you must also enable.

Command line: Use the option -report-template. See “Command-Line Information”
on page 2-369.

Why Use This Option
Depending on the template that you use, the report contains information about certain
types of results from the Results List pane. The template also determines what
information is presented in the report and how the information is organized. See the
template descriptions below.

Settings – Bug Finder
Default: BugFinderSummary

BugFinder
The report lists:

 Bug Finder and Code Prover report (-report-template)

2-361

• Polyspace Bug Finder Summary: Number of results in the project. The results
are summarized by file. The files that are partially analyzed because of compilation
errors are listed in a separate table.

• Code Metrics: Summary of the various code complexity metrics. For more
information, see “Code Metrics” (Polyspace Bug Finder Access).

• Coding Rules: Coding rule violations in the source code. For each rule violation,
the report lists the:

• Rule number and description.
• Function containing the rule violation.
• Review information, such as Severity, Status and comments.

• Defects: Defects found in the source code. For each defect, the report lists the:

• Function containing the defect.
• Defect information on the Result Details pane.
• Review information, such as Severity, Status and comments.

• Configuration Settings: List of analysis options that Polyspace uses for analysis.
If you configured your project for multitasking, this section also lists the
Concurrency Modeling Summary. If your project has source files with
compilation errors, these files are also listed.

If you check for coding rules, an additional Coding Rules Configuration section
states the rules along with the information whether they were enabled or disabled.

BugFinderSummary
The report lists:

• Polyspace Bug Finder Summary: Number of results in the project. The results
are summarized by file. The files that are partially analyzed because of compilation
errors are listed in a separate table.

• Code Metrics: Summary of the various code complexity metrics. For more
information, see “Code Metrics” (Polyspace Bug Finder Access).

• Coding Rules Summary: Coding rules along with number of violations.
• Defect Summary: Defects that Polyspace Bug Finder looks for. For each defect,

the report lists the:

• Defect group.

2 Option Descriptions

2-362

• Defect name.
• Number of instances of the defect found in the source code.

• Configuration Settings: List of analysis options that Polyspace uses for analysis.
If you configured your project for multitasking, this section also lists the
Concurrency Modeling Summary. For more information, see “Analysis Options”
(Polyspace Bug Finder). If your project has source files with compilation errors,
these files are also listed.

If you check for coding rules, an additional Coding Rules Configuration section
states the rules along with the information whether they were enabled or disabled.

CodeMetrics
The report lists the following:

• Code Metrics Summary: Various quantities related to the source code. For more
information, see “Code Metrics” (Polyspace Bug Finder Access).

• Code Metrics Details: Various quantities related to the source code with the
information broken down by file and function.

• Configuration Settings: List of analysis options that Polyspace uses for analysis.
If you configured your project for multitasking, this section also lists the
Concurrency Modeling Summary. If your project has source files with
compilation errors, these files are also listed.

If you check for coding rules, an additional Coding Rules Configuration section
states the rules along with the information whether they were enabled or disabled.

CodingStandards
The report contains separate chapters for each coding standard enabled in the
analysis (for instance, MISRA C: 2012, CERT C, custom rules, and so on). Each
chapter contains the following information:

• Summary - Violations by File: Graph showing each file with number of rule
violations.

• Summary - Violations by Rule: Graph showing each rule with number of
violations. If a rule is not enabled or not violated, it does not appear in the graph.

• Summary for all Files: Table showing each file with number of rule violations.
• Summary for Enabled Guidelines or Summary for Enabled Rules: Table

showing each guideline or rule with number of violations.

 Bug Finder and Code Prover report (-report-template)

2-363

• Violations: Tables listing each rule violation, along with information such as ID,
function name, severity, status, and so on. One table is created per file.

An appendix lists the options used in the Polyspace analysis.
SecurityCWE

The report contains the same information as the BugFinder report. However, in the
Defects chapter, an additional column lists the CWE rules mapped to each defect.
The Configuration Settings appendix also includes a Security Standard to
Polyspace Result Map.

Metrics
Only available for results downloaded from the Polyspace Metrics interface.

The report lists information useful to quality engineers and available on the Polyspace
Metrics interface, including:

• Information about whether the project satisfies quality objectives
• Time taken in each phase of analysis
• Metrics about the whole project. For each metric, the report lists the quality

threshold and whether the metric satisfies this threshold.
• Coding rule violations in the project. For each rule, the report lists the number of

violations justified and whether the justifications satisfy quality objectives.
• Definite as well as possible run-time errors in the project. For each type of run-

time error, the report lists the number of errors justified and whether the
justifications satisfy quality objectives.

The appendices contain further details of Polyspace configuration settings, code
metrics, coding rule violations, and run-time errors.

Settings – Code Prover
Default: Developer

CodeMetrics
The report contains a summary of code metrics, followed by the complete metrics for
an application.

2 Option Descriptions

2-364

CodingStandards
The report contains separate chapters for each coding standard enabled in the
analysis (for instance, MISRA C: 2012, custom rules, and so on). Each chapter
contains the following information:

• Summary - Violations by File: Graph showing each file with number of rule
violations.

• Summary - Violations by Rule: Graph showing each rule with number of
violations. If a rule is not enabled or not violated, it does not appear in the graph.

• Summary for all Files: Table showing each file with number of rule violations.
• Summary for Enabled Guidelines or Summary for Enabled Rules: Table

showing each guideline or rule with number of violations.
• Violations: Tables listing each rule violation, along with information such as ID,

function name, severity, status, and so on. One table is created per file.

An appendix lists the options used in the Polyspace analysis.
Developer

The report lists information useful to developers, including:

• Summary of results
• Coding rule violations
• List of proven run-time errors or red checks
• List of unproven run-time errors or orange checks
• List of unreachable procedures or gray checks
• Global variable usage in code. See “Global Variables” (Polyspace Code Prover

Access).

The report also contains the Polyspace configuration settings and modifiable
assumptions used in the analysis. If your project has source files with compilation
errors, these files are also listed.

DeveloperReview
The report lists the same information as the Developer report. However, the
reviewed results are sorted by severity and status, and unreviewed results are sorted
by file location.

 Bug Finder and Code Prover report (-report-template)

2-365

Developer_withGreenChecks
The report lists the same information as the Developer report. In addition, the
report lists code proven to be error-free or green checks.

Quality
The report lists information useful to quality engineers, including:

• Summary of results
• Statistics about the code
• Graphs showing distributions of checks per file

The report also contains the Polyspace configuration settings and modifiable
assumptions used in the analysis. If your project has source files with compilation
errors, these files are also listed.

VariableAccess
The report displays the global variable access in your source code. The report first
displays the number of global variables of each type. For information on the types, see
“Global Variables” (Polyspace Code Prover Access). For each global variable, the
report displays the following information:

• Variable name.

The entry for each variable is denoted by |.
• Type of the variable.
• Number of read and write operations on the variable.
• Details of read and write operations. For each read or write operation, the table

displays the following information:

• File and function containing the operation in the form
file_name.function_name.

The entry for each read or write operation is denoted by ||. Write operations
are denoted by < and read operations by >.

• Line and column number of the operation.

This report captures the information available on the Variable Access pane in the
Polyspace user interface.

2 Option Descriptions

2-366

CallHierarchy
The report displays the call hierarchy in your source code. For each function call in
your source code, the report displays the following information:

• Level of call hierarchy, where the function is called.

Each level is denoted by |. If a function call appears in the table as |||->
file_name.function_name, the function call occurs at the third level of the
hierarchy. Beginning from main or an entry point, there are three function calls
leading to the current call.

• File containing the function call.

In addition, the line and column is also displayed.
• File containing the function definition.

In addition, the line and column where the function definition begins is also
displayed.

In addition, the report also displays uncalled functions.

This report captures the information available on the Call Hierarchy pane in the
Polyspace user interface.

SoftwareQualityObjectives
The report lists information useful to quality engineers and available on the Polyspace
Metrics interface, including:

• Information about whether the project satisfies quality objectives
• Time taken in each phase of verification
• Metrics about the whole project. For each metric, the report lists the quality

threshold and whether the metric satisfies this threshold.
• Coding rule violations in the project. For each rule, the report lists the number of

violations justified and whether the justifications satisfy quality objectives.
• Definite as well as possible run-time errors in the project. For each type of run-

time error, the report lists the number of errors justified and whether the
justifications satisfy quality objectives.

The appendices contain further details of Polyspace configuration settings, code
metrics, coding rule violations, and run-time errors.

 Bug Finder and Code Prover report (-report-template)

2-367

This template is available only if you generate a report from results uploaded to the
Polyspace Access web interface or from results uploaded to the Polyspace Metrics
web interface (and then downloaded to the Polyspace user interface) . In each case,
you have to set the objectives explicitly in the web interface and then generate the
reports.

SoftwareQualityObjectives_Summary
The report contains the same information as the SoftwareQualityObjectives
report. However, it does not have the supporting appendices with details of code
metrics, coding rule violations and run-time errors.

This template is available only if you generate a report from results uploaded to the
Polyspace Access web interface or from results uploaded to the Polyspace Metrics
web interface (and then downloaded to the Polyspace user interface). In each case,
you have to set a quality objective level explicitly in the web interface and then
generate the reports.

Dependencies
In the user interface of the Polyspace desktop products, this option is enabled only if you
select the Generate report option.

Tips
• This option allows you to specify report generation before starting an analysis.

To generate a report after an analysis is complete, in the user interface of the
Polyspace desktop products, select Reporting > Run Report. Alternatively, at the
command line, use the polyspace-report-generator command.

After analysis, you can also export the result as a text file for further customization.
Use the option -generate-results-list-file with the polyspace-report-
generator command.

• In Bug Finder, the report does not contain the line or column number for a result. Use
the report for archiving, gathering statistics and checking whether results have been
reviewed and addressed (for certification purposes or otherwise). To review a result in
your source code, use the Polyspace user interface or your IDE if you are using a
Polyspace plugin.

2 Option Descriptions

2-368

• If you use the SoftwareQualityObjectives_Summary and
SoftwareQualityObjectives templates to generate reports, the pass/fail status
depends on whether you set the quality objectives level in Polyspace Metrics or
Polyspace Access:

• In Polyspace Access, the pass/fail status is determined based on all results. For
instance, if you use the level SQO-4 which sets a threshold of 60% on orange
overflow checks, your project has a FAIL status if the percentage of green and
justified orange overflow checks is less than 60% of all green and orange overflow
checks.

• In Polyspace Metrics, the pass/fail status is determined based on a file-by-file basis.
The overall status is FAIL if one of the files have a FAIL status. For instance, if you
use the level SQO-4 which sets a threshold of 60% on orange overflow checks, your
project has a FAIL status if the percentage of green and justified orange overflow
checks in any file is less than 60% of green and orange overflow checks in that file.

Command-Line Information
Parameter: -report-template
Value: Full path to template.rpt
Example (Bug Finder): polyspace-bug-finder -sources file_name -report-
template polyspaceroot\toolbox\polyspace\psrptgen\templates
\bug_finder\BugFinder.rpt
Example (Code Prover): polyspace-code-prover -sources file_name -
report-template polyspaceroot\toolbox\polyspace\psrptgen\templates
\Developer.rpt
Example (Bug Finder Server): polyspace-bug-finder-server -sources
file_name -report-template polyspaceroot\toolbox\polyspace\psrptgen
\templates\bug_finder\BugFinder.rpt
Example (Code Prover Server): polyspace-code-prover-server -sources
file_name -report-template polyspaceroot\toolbox\polyspace\psrptgen
\templates\Developer.rpt

See Also
Generate report | Output format (-report-output-format) | polyspace-
report-generator

 Bug Finder and Code Prover report (-report-template)

2-369

Topics
“Prepare Scripts for Polyspace Analysis”

2 Option Descriptions

2-370

Output format (-report-output-format)
Specify output format of generated report

Description
Specify output format of analysis report.

Set Option
User interface (desktop products only): In your project configuration, the option is on
the Reporting node. See “Dependencies” on page 2-372 for other options you must also
enable.

Command line: Use the option -report-output-format. See “Command-Line
Information” on page 2-372.

Why Use This Option
Use this option to specify whether you want a report in PDF, HTML or another format.

Settings
Default: Word

HTML
Generate report in .html format

PDF
Generate report in .pdf format

Word
Generate report in .docx format.

 Output format (-report-output-format)

2-371

Tips
• This option allows you to specify report generation before starting an analysis.

To generate a report after an analysis is complete, in the user interface of the
Polyspace desktop products, select Reporting > Run Report. Alternatively, at the
command line, use the polyspace-report-generator command.

After analysis, you can also export the result as a text file for further customization.
Use the option -generate-results-list-file with the polyspace-report-
generator command.

• If the table of contents or graphics in a .docx report appear outdated, select the
content of the report and refresh the document. Use keyboard shortcuts Ctrl+A to
select the content and F9 to refresh it.

Dependencies
In the user interface of the Polyspace desktop products, this option is enabled only if you
select the Generate report option.

Command-Line Information
Parameter: -report-output-format
Value: html | pdf | word
Default: word
Example (Bug Finder): polyspace-bug-finder -sources file_name -report-
output-format pdf
Example (Code Prover): polyspace-code-prover -sources file_name -
report-output-format pdf
Example (Bug Finder Server): polyspace-bug-finder-server -sources
file_name -report-output-format pdf
Example (Code Prover Server): polyspace-code-prover-server -sources
file_name -report-output-format pdf

See Also
Bug Finder and Code Prover report (-report-template) | Generate report
| polyspace-report-generator

2 Option Descriptions

2-372

Topics
“Prepare Scripts for Polyspace Analysis”

 Output format (-report-output-format)

2-373

Run Bug Finder or Code Prover analysis on a
remote cluster (-batch)
Enable batch remote analysis

Description
This option applies to the Polyspace desktop products only. The option is used to send the
analysis from a desktop to a server (where the analysis runs using the Polyspace server
products).

Specify that the analysis must be offloaded to a remote server.

To offload a Polyspace analysis, you need:

• Polyspace Bug Finder Server and/or Polyspace Code Prover Server, and MATLAB
Parallel Server™ on the server.

• Polyspace Bug Finder and/or Polyspace Code Prover on the desktop.

See “Install Products for Submitting Polyspace Analysis from Desktops to Remote
Server”.

Set Option
User interface: In your project configuration, the option is on the Run Settings node.
You have separate options for a Bug Finder and a Code Prover analysis.

Command line: Use the option -batch. See “Command-Line Information” on page 2-
376.

Why Use This Option
Use this option if you want the analysis to run on a remote cluster instead of your local
desktop.

For instance, you can run remote analysis when:

2 Option Descriptions

2-374

• You want to shut down your local machine but not interrupt the analysis.
• You want to free execution time on your local machine.
• You want to transfer the analysis to a more powerful computer.

Settings
 On

Run batch analysis on a remote computer. In this remote analysis mode, the analysis
is queued on a cluster after the compilation phase. Therefore, on your local computer,
after the analysis is queued:

• If you are running the analysis from the Polyspace user interface, you can close
the user interface.

• If you are running the analysis from the command line, you can close the
command-line window.

You can manage the queue from the Polyspace Job Monitor. To use the Polyspace Job
Monitor:

• In the Polyspace user interface, select Tools > Open Job Monitor. See “Send
Polyspace Analysis from Desktop to Remote Servers”.

• On the DOS or UNIX® command line, use the polyspace-jobs-manager
command. For more information, see “Send Polyspace Analysis from Desktop to
Remote Servers Using Scripts”.

• On the MATLAB command line, use the polyspaceJobsManager function.

After the analysis, you might have to manually download the results from the cluster.
 Off (default)

Do not run batch analysis on a remote computer.

Dependencies
• If you use a third-party scheduler instead of the MATLAB Job Scheduler, add the

option -no-credentials-check. The credentials check performed in the product is
only compatible with the MATLAB Job Scheduler. In the Polyspace user interface, add
this option to the Other field.

 Run Bug Finder or Code Prover analysis on a remote cluster (-batch)

2-375

• Do not run a Code Prover analysis on a remote cluster if you run up to the
Verification Level of Source Compliance Checking. For both local and remote
analysis, the source compliance checking or compilation phase takes place on your
local computer. Therefore, if you are running only up to this phase, run on your local
computer.

Command-Line Information
To run a remote analysis from the command line, use with the -scheduler option.
Parameter: -batch
Value: -scheduler host_name if you have not set the Job scheduler host name in
the Polyspace user interface
Default: Off
Example (Bug Finder): polyspace-bug-finder -batch -scheduler NodeHost
polyspace-bug-finder -batch -scheduler MJSName@NodeHost
Example (Code Prover): polyspace-code-prover -batch -scheduler NodeHost
polyspace-code-prover -batch -scheduler MJSName@NodeHost

See Also
-scheduler

Topics
“Install Products for Submitting Polyspace Analysis from Desktops to Remote Server”
“Prepare Scripts for Polyspace Analysis”
“Send Polyspace Analysis from Desktop to Remote Servers”
“Send Polyspace Analysis from Desktop to Remote Servers Using Scripts”
“Send Analysis from Client to Server”

2 Option Descriptions

2-376

Upload results to Polyspace Metrics (-add-
to-results-repository)
Upload analysis results for viewing on Polyspace Metrics web dashboard

Description
This option applies to the Polyspace desktop products only.

Specify upload of analysis results to the Polyspace Metrics results repository, allowing
Web-based reporting of results and code metrics.

Set Option
User interface: In your project configuration, the option is on the Run Settings node.
You have separate options for a Bug Finder and a Code Prover analysis. See
“Dependencies” on page 2-378 for other options that you must also enable.

Command line: Use the option -add-to-results-repository. See “Command-Line
Information” on page 2-378.

Why Use This Option
Polyspace Metrics is a web dashboard that generates code quality metrics from your
analysis results. Using this dashboard, you can:

• Provide your management a high-level overview of your code quality.
• Compare your code quality against predefined standards.
• Establish a process where you review in detail only those results that fail to meet

standards.
• Track improvements or regression in code quality over time.

See “Generate Code Quality Metrics with Polyspace Metrics” (Polyspace Bug Finder).

 Upload results to Polyspace Metrics (-add-to-results-repository)

2-377

Settings
 On

Analysis results are stored in the Polyspace Metrics results repository. This allows you
to use a Web browser to view results and code metrics.

The results are not downloaded automatically to your desktop.

 Off (default)
Analysis results are stored locally.

Dependencies
The option to upload to Polyspace Metrics is available only if you select Run Bug Finder
or Code Prover analysis on a remote cluster (-batch).

If you perform a local analysis on your desktop, you can later upload your results to
Polyspace Metrics. Right-click your results file and select Upload to Metrics.

Command-Line Information
Parameter: -add-to-results-repository
Default: Off
Example (Bug Finder): polyspace-bug-finder -batch -scheduler NodeHost -
add-to-results-repository -password passwordName
Example (Code Prover): polyspace-code-prover -batch -scheduler NodeHost
-add-to-results-repository -password passwordName

The password is optional.

The upload uses the Polyspace Metrics server that you set up in the Polyspace user
interface. See “Set Up Polyspace Metrics” (Polyspace Bug Finder). If you want to
explicitly specify the Polyspace Metrics server during upload, use the option -
polyspace-metrics-server serverName:portNumber. For instance:

-add-to-results-repository -polyspace-metrics-server localhost:12427

2 Option Descriptions

2-378

See Also
Run Bug Finder or Code Prover analysis on a remote cluster (-batch)

Topics
“Set Up Polyspace Metrics” (Polyspace Bug Finder)
“Generate Code Quality Metrics with Polyspace Metrics” (Polyspace Bug Finder)

 Upload results to Polyspace Metrics (-add-to-results-repository)

2-379

Use fast analysis mode for Bug Finder (-
fast-analysis)
Run analysis using faster local mode

Description
This option affects a Bug Finder analysis only.

Run analysis using faster local mode. The first run analyzes all files, but subsequent runs
analyze only the files that you edited since the previous analysis.

Fast analysis mode is a faster way to analyze code for localized defects and coding rules.
When you launch fast analysis, Bug Finder analyzes your code for a subset of defects and
coding rules.

Set Option
User interface (desktop products only): In your project configuration, the option is
available on the Run Settings node.

Command line: Use the option -fast-analysis. See “Command-Line Information” on
page 2-383.

Why Use This Option
If you use this option, you have to wait less for analysis results from your second analysis
onwards. During development, you can frequently run analysis in fast mode and quickly
check for new defects or coding rule violations.

Polyspace produces results quickly because the analysis is localized. When you rerun in
fast-analysis mode, Polyspace reanalyzes only those files that need to be reanalyzed,
regenerating results even more quickly. These situations trigger a reanalysis.

2 Option Descriptions

2-380

Situation What Is Reanalyzed
You modified a source file. Modified source file
You modified a header file. Source files that include the modified header

file (directly or indirectly)
You added or removed an analysis
option.

All files

Previous fast-analysis results were not
found.

For instance, you deleted the results
folder.

All files

You upgraded to a later release of
Polyspace and ran the analysis.

All files

Comments from the previous analysis are
retained and imported to the current analysis.

For example, consider a Polyspace project with three .c files and you fix a bug in one of
the files. When you rerun the analysis, Polyspace reanalyzes only the one file that you
changed.

The results of fast analysis appear in a folder separate from the results of normal analysis.

 Use fast analysis mode for Bug Finder (-fast-analysis)

2-381

Settings
Default: Off

 On
Polyspace Bug Finder runs in fast-analysis mode. Polyspace analyzes code for only a
subset of defects and coding rules. If you have selected any defects or coding rules
that are not supported by fast-analysis, you code is not checked for those results.

 Off
Polyspace Bug Finder runs in the normal mode. Analysis checks for all selected
defects, coding rules, and code metrics.

Tips

Comments Import
If you enter comments in your results, the comments are automatically imported to the
next analysis in fast mode.

To import the comments from fast mode results to results of a regular Bug Finder
analysis, do one of the following:

• Select Tools > Import Comments. Navigate to the sibling results folder
BF_Fast_Result and import comments from the fast mode results.

• When reviewing results of fast mode, enter the comments directly into your code. If
you run a regular analysis on this code, the comments are imported to your analysis
results.

For details on how to enter code comments, see “Annotate Code and Hide Known or
Acceptable Results” (Polyspace Bug Finder).

Fast Analysis Limitations
In fast analysis mode, you cannot perform these actions:

• You cannot create a new results folder for each run. Even if you choose to create a
new result folder, each new run overwrites the previous one.

2 Option Descriptions

2-382

• You cannot specify constraints using the option Constraint setup (-data-
range-specifications).

• You cannot run the analysis on a remote cluster.

Command-Line Information
Parameter: -fast-analysis
Default: Off
Example (Bug Finder): polyspace-bug-finder -sources filename -fast-
analysis
Example (Bug Finder Server): polyspace-bug-finder-server -sources
filename -fast-analysis

See Also

Topics
“Bug Finder Results Found in Fast Analysis Mode”

 Use fast analysis mode for Bug Finder (-fast-analysis)

2-383

Command/script to apply after the end of
the code verification (-post-analysis-
command)
Specify command or script to be executed after analysis

Description
Specify a command or script to be executed after the analysis.

Set Option
User interface (desktop products only): In your project configuration, the option is on
the Advanced Settings node.

Command line: Use the option -post-analysis-command. See “Command-Line
Information” on page 2-386.

Why Use This Option
Create scripts for tasks that you want performed after the Polyspace analysis.

For instance, you want to be notified by email that the Polyspace analysis is over. Create a
script that sends an email and use this option to execute the script after the Polyspace
analysis.

Settings
No Default

Enter full path to the command or script, or click to navigate to the location of the
command or script. After the analysis, this script is executed.

2 Option Descriptions

2-384

For a Perl script, in Windows, specify the full path to the Perl executable followed by the
full path to the script. For example, to specify a Perl script send_email.pl that sends an
email once the analysis is over, enter polyspaceroot\sys\perl\win32\bin
\perl.exe <absolute_path>\send_email.pl. Here, polyspaceroot is the
location of the current Polyspace installation, such as C:\Program Files\Polyspace
\R2019a\, and <absolute_path> is the location of the Perl script.

Tips

Running post analysis commands on the server
If you perform verification on a remote server, after verification, the software executes
your command on the server, not on the client desktop. If your command executes a
script, the script must be present on the server.

For instance, if you specify the command, /local/utils/send_mail.sh, the Shell
script send_email.sh must be present on the server in /local/utils/. The software
does not copy the script send_email.sh from your desktop to the server before
executing the command. If the script is not present on the server, you encounter an error.
Sometimes, there are multiple servers that the MATLAB Job Scheduler can run the
verification on. Place the script on each of the servers because you do not control which
server eventually runs your verification.

Running post analysis commands in the Polyspace user
interface
To test the use of this option, run the following Perl script from a folder containing a
Polyspace project (.psprj file). The script parses the latest Polyspace log file in the
folder Module_1\CP_Result and writes the current project name and date to a file
report.txt. The file is saved in Module_1\CP_Result.

 Command/script to apply after the end of the code verification (-post-analysis-command)

2-385

foreach my $file (`ls Module_1\\CP_Result\\Polyspace_*.log`) {
 open (FH, $file);

while ($line = <FH>) {
 if ($line =~ m/Ending at: (.*)/) {
 $date=$1;
 }
 if ($line =~ m/-prog=(.*)/) {
 $project=$1;
 }
 }
}

my $filename = 'report.txt';
open(my $fh, '>', $filename) or die "Could not open file '$filename' $!";

print $fh "date=$date\n";
print $fh "project=$project\n";

close $fh;

In Linux, you can specify the Perl script for this option.

In Windows, instead of specifying the Perl script directly, specify a .bat file that invokes
Perl and runs this script. For instance, the .bat file can contain the following line
(assuming that the .bat file and .pl file are in the Polyspace project folder). Depending
on your MATLAB installation, change the path to perl.exe appropriately.

"C:\Program Files\MATLAB\R2018b\sys\perl\win32\bin\perl.exe" command.pl

Run Code Prover. Check that the folder Module_1\CP_Result contains the file
report.txt with the project name and date.

Command-Line Information
Parameter: -post-analysis-command
Value: Path to executable file or command in quotes
No Default
Example in Linux (Bug Finder): polyspace-bug-finder -sources file_name -
post-analysis-command `pwd`/send_email.pl

2 Option Descriptions

2-386

Example in Linux (Code Prover) : polyspace-code-prover -sources file_name
-post-analysis-command `pwd`/send_email.pl
Example in Linux (Bug Finder Server): polyspace-bug-finder-server -
sources file_name -post-analysis-command `pwd`/send_email.pl
Example in Linux (Code Prover Server): polyspace-code-prover-server -
sources file_name -post-analysis-command `pwd`/send_email.pl
Example in Windows: polyspace-bug-finder -sources file_name -post-
analysis-command "C:\Program Files\MATLAB\R2015b\sys\perl\win32\bin
\perl.exe" "C:\My_Scripts\send_email"

Note that in Windows, you use the full path to the Perl executable.

See Also
Command/script to apply to preprocessed files (-post-preprocessing-
command)

Topics
“Prepare Scripts for Polyspace Analysis”

 Command/script to apply after the end of the code verification (-post-analysis-command)

2-387

Automatic Orange Tester (-automatic-
orange-tester)
Specify that Automatic Orange Tester must be executed after verification

Description
This option affects a Code Prover analysis only. Use this option only if you review the
Code Prover results in the Polyspace desktop products.

Specify that the Automatic Orange Tester must be executed at the end of the verification.

Set Option
User interface (desktop products only): In your project configuration, the option is on
the Advanced Settings node. See “Dependency” on page 2-389 for other options you
must also enable.

Command line: Use the option -automatic-orange-tester. See “Command-Line
Information” on page 2-389.

Why Use This Option
The Automatic Orange Tester runs dynamic tests on your code. The dynamic tests help
you determine if an orange check represents a real run-time error or an imprecision of
Polyspace analysis. For a tutorial, see “Test Orange Checks for Run-Time Errors”
(Polyspace Code Prover).

To run the Automatic Orange Tester after verification, you must select this option before
verification. During verification, Polyspace generates additional source code to test each
orange check for errors. When you run the Automatic Orange Tester later, the software
uses this instrumented code for testing.

2 Option Descriptions

2-388

Settings
 On

After verification, when you run the Automatic Orange Tester, Polyspace creates tests
for unproven code and runs them.

 Off (default)
You cannot launch the Automatic Orange Tester after verification.

Dependency
This option is available only if you set Source code language (-lang) to C or C-CPP.

Tips
• To launch the Automatic Orange Tester, after verification, open your results. Select

Tools > Automatic Orange Tester.
• When using the automatic orange tester, you cannot:

• Select Division round down under Target & Compiler.
• Select the options c18, tms320c3c. x86_64 or sharc21x61 for Target &

Compiler > Target processor type.
• Specify the type char as 16-bit or short as 8-bit using the option mcpu...

(Advanced) for Target & Compiler > Target processor type. For the same
option, you must specify the type pointer as 32-bit.

• Specify global asserts in the code, having the form Pst_Global_Assert(A,B). In
global assert mode, you cannot use Constraint setup under Inputs & Stubbing.

• Select these options related to floating-point verification: Subnormal detection
mode and Consider non finite floats.

Command-Line Information
Parameter: -automatic-orange-tester
Default: Off

 Automatic Orange Tester (-automatic-orange-tester)

2-389

Example (Code Prover): polyspace-code-prover -sources file_name -lang c
-automatic-orange-tester

See Also
Maximum loop iterations (-automatic-orange-tester-loop-max-
iteration) | Maximum test time (-automatic-orange-tester-timeout) |
Number of automatic tests (-automatic-orange-tester-tests-number)

Topics
“Prepare Scripts for Polyspace Analysis”
“Test Orange Checks for Run-Time Errors” (Polyspace Code Prover)
“Limitations of Automatic Orange Tester” (Polyspace Code Prover)

2 Option Descriptions

2-390

Maximum loop iterations (-automatic-
orange-tester-loop-max-iteration)
Specify number of loop iterations after which Automatic Orange Tester considers infinite
loop

Description
This option affects a Code Prover analysis only. Use this option only if you review the
Code Prover results in the Polyspace desktop products.

Specify number of loop iterations after which the Automatic Orange Tester considers the
loop to be infinite. Specifying a large number decreases the possibility of identifying an
infinite loop incorrectly, but takes more time to complete.

Set Option
User interface (desktop products only): In your project configuration, the option is on
the Advanced Settings node. See “Dependencies” on page 2-391 for other options you
must also enable.

Command line: Use the option -automatic-orange-tester-loop-max-iteration.
See “Command-Line Information” on page 2-392.

Settings
Default: 1000

Enter number of loop iterations. The maximum value that the software supports is 1000.

Dependencies
This option is enabled only if you set the following options:

 Maximum loop iterations (-automatic-orange-tester-loop-max-iteration)

2-391

• Set Source code language (-lang) to C or C-CPP.
• Specify the option Automatic Orange Tester (-automatic-orange-tester).

Command-Line Information
Parameter: -automatic-orange-tester-loop-max-iteration
Value: positive integer
Default: 1000
Example (Code Prover): polyspace-code-prover -sources file_name -lang c
-automatic-orange-tester -automatic-orange-tester-loop-max-iteration
500

See Also
Automatic Orange Tester (-automatic-orange-tester)

Topics
“Prepare Scripts for Polyspace Analysis”
“Test Orange Checks for Run-Time Errors” (Polyspace Code Prover)

2 Option Descriptions

2-392

Number of automatic tests (-automatic-
orange-tester-tests-number)
Specify number of tests that Automatic Orange Tester must run

Description
This option affects a Code Prover analysis only. Use this option only if you review the
Code Prover results in the Polyspace desktop products.

Specify number of tests that you want the Automatic Orange Tester to run. The more the
number of tests, the greater the possibility of finding a run-time error, but longer it takes
to complete.

Set Option
User interface (desktop products only): In your project configuration, the option is on
the Advanced Settings node. See “Dependencies” on page 2-393 for other options you
must also enable.

Command line: Use the option -automatic-orange-tester-tests-number. See
“Command-Line Information” on page 2-394.

Settings
Default: 500

Enter number of tests up to a maximum of 100,000.

Dependencies
This option is enabled only if you set the following options:

• Set Source code language (-lang) to C or C-CPP.

 Number of automatic tests (-automatic-orange-tester-tests-number)

2-393

• Specify the option Automatic Orange Tester (-automatic-orange-tester).

Command-Line Information
Parameter: -automatic-orange-tester-tests-number
Value: positive integer
Default: 500
Example (Code Prover): polyspace-code-prover -sources file_name -lang c
-automatic-orange-tester -automatic-orange-tester-tests-number 500

See Also
Automatic Orange Tester (-automatic-orange-tester)

Topics
“Prepare Scripts for Polyspace Analysis”
“Test Orange Checks for Run-Time Errors” (Polyspace Code Prover)

2 Option Descriptions

2-394

Maximum test time (-automatic-orange-
tester-timeout)
Specify time in seconds allowed for a single test in Automatic Orange Tester

Description
This option affects a Code Prover analysis only. Use this option only if you review the
Code Prover results in the Polyspace desktop products.

Specify time in seconds allowed for a single test. After this time is over, the Automatic
Orange Tester proceeds to the next test. Increasing this time reduces number of tests that
do not complete, but increases total verification time.

Set Option
User interface (desktop products only): In your project configuration, the option is on
the Advanced Settings node. See “Dependencies” on page 2-395 for other options you
must also enable.

Command line: Use the option -automatic-orange-tester-timeout. See
“Command-Line Information” on page 2-396.

Settings
Default: 5

Enter time in seconds. The maximum value that the software supports is 60.

Dependencies
This option is enabled only if you set the following options:

• Set Source code language (-lang) to C or C-CPP.

 Maximum test time (-automatic-orange-tester-timeout)

2-395

• Specify the option Automatic Orange Tester (-automatic-orange-tester).

Command-Line Information
Parameter: -automatic-orange-tester-timeout
Value: time
Default: 5
Example (Code Prover): polyspace-code-prover -sources file_name -lang c
-automatic-orange-tester -automatic-orange-tester-test-timeout 10

See Also
Automatic Orange Tester (-automatic-orange-tester)

Topics
“Prepare Scripts for Polyspace Analysis”
“Test Orange Checks for Run-Time Errors” (Polyspace Code Prover)

2 Option Descriptions

2-396

Other
Specify additional flags for analysis

Description
This option is useful only if you run an analysis in the user interface of the Polyspace
desktop products.

Enter command-line-style flags such as -max-processes.

Set Option
In your project configuration, the option is on the Advanced Settings node. You can
enter multiple options in this field. If you enter the same option multiple times with
different arguments, the analysis uses your last argument.

Why Use This Option
Use this option to add nonofficial or command-line only options to the analyzer.

Tip
Nonofficial options: In rare circumstances, to work around very specific issues,
MathWorks Technical Support might provide you some undocumented options. If you are
running verification from the user interface, you use the Other field in the Configuration
pane to enter the options. Sometimes, the options and their arguments have to be
preceded by extra flags. When providing you the option, Technical Support will let you
know if the extra flags are required.
Possible Flags: -extra-flags | -c-extra-flags | -cpp-extra-flags | -
cfe-extra-flags | -il-extra-flags
Example (Bug Finder): polyspace-bug-finder -extra-flags -option-name -
extra-flags option_param
Example (Code Prover): polyspace-code-prover -extra-flags -option-name
-extra-flags option_param

 Other

2-397

Example (Bug Finder Server): polyspace-bug-finder-server -extra-flags -
option-name -extra-flags option_param
Example (Code Prover Server): polyspace-code-prover-server -extra-flags
-option-name -extra-flags option_param

2 Option Descriptions

2-398

Oops! This page does not exist.
You are looking for a nonexistent resource.

Check Other Locations
You may be able to find what you need here:

• Polyspace Bug Finder documentation
• Polyspace Code Prover documentation
• Polyspace Bug Finder Server documentation
• Polyspace Code Prover Server documentation
• Polyspace Bug Finder Access documentation
• Polyspace Code Prover Access documentation

 Oops! This page does not exist.

2-399

Polyspace Command-Line Options

3

-asm-begin -asm-end
Exclude compiler-specific asm functions from analysis

Syntax
-asm-begin "mark1[,mark2,...]" -asm-end "mark1[,mark2,...]"

Description
-asm-begin "mark1[,mark2,...]" -asm-end "mark1[,mark2,...]" excludes
compiler-specific assembly language source code functions from the analysis. You must
use these two options together.

Polyspace recognizes most inline assemblers by default. Use the option only if compilation
errors occur due to introduction of assembly code. For more information, see “Assembly
Code” (Polyspace Code Prover).

Mark the offending code block by two #pragma directives, one at the beginning of the
assembly code and one at the end. In the command usage, give these marks in the same
order for -asm-begin as they are for -asm-end.

If you are running an analysis from the user interface (Polyspace desktop products only),
on the Configuration pane, you can enter this option in the Other field. See Other.

Examples
A block of code is delimited by #pragma start1 and #pragma end1. These names must
be in the same order for their respective options. Either:

-asm-begin "start1" -asm-end "end1"

or

-asm-begin "mark1,...markN,start1" -asm-end "mark1,...markN,end1"

The following example marks two functions for exclusion, foo_1 and foo_2.

3 Polyspace Command-Line Options

3-2

Code:

#pragma asm_begin_foo
int foo(void) { /* asm code to be ignored by Polyspace */ }
#pragma asm_end_foo

#pragma asm_begin_bar
void bar(void) { /* asm code to be ignored by Polyspace */ }
#pragma asm_end_bar

Polyspace Command:

• Bug Finder:

polyspace-bug-finder -lang c -asm-begin "asm_begin_foo,asm_begin_bar"
 -asm-end "asm_end_foo,asm_end_bar"

• Code Prover:

polyspace-code-prover -lang c -asm-begin "asm_begin_foo,asm_begin_bar"
 -asm-end "asm_end_foo,asm_end_bar"

• Bug Finder Server:

polyspace-bug-finder-server -lang c -asm-begin "asm_begin_foo,asm_begin_bar"
 -asm-end "asm_end_foo,asm_end_bar"

• Code Prover Server:

polyspace-code-prover-server -lang c -asm-begin "asm_begin_foo,asm_begin_bar"
 -asm-end "asm_end_foo,asm_end_bar"

asm_begin_foo and asm_begin_bar mark the beginning of the assembly source code
sections to be ignored. asm_end_foo and asm_end_bar mark the end of those
respective sections.

See Also

Topics
“Prepare Scripts for Polyspace Analysis”

 -asm-begin -asm-end

3-3

-author
Specify project author

Syntax
-author "value"

Description
-author "value" assigns an author to the Polyspace project. The name appears as the
project owner in Polyspace Metrics and on generated reports.

The default value is the user name of the current user, given by the DOS or UNIX
command whoami.

In the user interface of the Polyspace desktop products, select to specify the Project
name, Version, and Author parameters in the Polyspace Project – Properties dialog box.

Examples
Assign a project author to your Polyspace Project.

• Bug Finder:

polyspace-bug-finder -author "John Smith"
• Code Prover:

polyspace-code-prover -author "John Smith"
• Bug Finder Server:

polyspace-bug-finder-server -author "John Smith"
• Code Prover Server:

polyspace-code-prover-server -author "John Smith"

3 Polyspace Command-Line Options

3-4

See Also
-date | -prog

Topics
“Prepare Scripts for Polyspace Analysis”

 -author

3-5

-custom-target
Create a custom target processor with specific data type sizes

Syntax
-custom-target target_sizes

Description
-custom-target target_sizes defines a custom target processor for the Polyspace
analysis. The target processor definition includes sizes in bytes of fundamental data types,
signedness of plain char, alignment of structures and underlying types of standard
typedef-s such as size_t, ptrdiff_t and wchar_t.

target_sizes is a comma-separated list specifying these values. From left to right, the
values are the following. If a data type is not supported, -1 is used for its size.

Specification Possible Values
Whether plain char is signed true or false
Size of char in bits

Other sizes are in bytes.

Number

Size of short Number
Size of int Number
Size of short long Number
Size of long Number
Size of long long Number
Size of float Number
Size of double Number
Size of long double Number
Size of pointer Number

3 Polyspace Command-Line Options

3-6

Specification Possible Values
Maximum alignment of all integer types Number
Maximum alignment of variables of type
struct or union

Number

Endianness little or big
Underlying type of size_t unknown, signed_char, unsigned_char,

short, unsigned_short, short_long,
unsigned_short_long, int,
unsigned_int, long, unsigned_long,
long_long or unsigned_long_long

Underlying type of ptrdiff_t Same possible values as size_t
Underlying type of wchar_t Same possible values as size_t

Typically, this option is used when the polyspace-configure command creates an
options file for the subsequent Polyspace analysis. However, you can directly enter this
option when manually writing options files. This option is useful in situations where your
target specifications are not covered by one of the predefined target processors. See
Target processor type (-target).

Examples
An usage of the option looks like this:

-custom-target false,8,2,4,-1,4,8,4,8,8,4,8,1,little,unsigned_int,int,unsigned_int

The option argument translates to the following target specification.

Specification Possible Values
Whether plain char is signed false
Size of char 8 bits
Size of short 2 bytes
Size of int 4 bytes
Size of short long short long is not supported.
Size of long 4 bytes

 -custom-target

3-7

Specification Possible Values
Size of long long 8 bytes
Size of float 4 bytes
Size of double 8 bytes
Size of long double 8 bytes
Size of pointer 4 bytes
Maximum alignment of all integer types 8 bytes
Maximum alignment of variables of type
struct or union

1 byte

Endianness little
Underlying type of size_t unsigned int
Underlying type of ptrdiff_t int
Underlying type of wchar_t unsigned int

See Also
Generic target options | Target processor type (-target)

Topics
“Prepare Scripts for Polyspace Analysis”

3 Polyspace Command-Line Options

3-8

-date
Specify date of analysis

Syntax
-date "date"

Description
-date "date" specifies the date stamp for the analysis in the format dd/mm/yyyy. By
default the value is the date the analysis starts.

Examples
Assign a date to your Polyspace Project:

• Bug Finder:

polyspace-bug-finder -date "15/03/2012"

• Code Prover:

polyspace-code-prover -date "15/03/2012"

• Bug Finder Server:

polyspace-bug-finder-server -date "15/03/2012"

• Code Prover Server:

polyspace-code-prover-server -date "15/03/2012"

See Also
-author | -date

 -date

3-9

Topics
“Prepare Scripts for Polyspace Analysis”

3 Polyspace Command-Line Options

3-10

-doc | -documentation
Display Polyspace documentation in help brwoser

Syntax
-doc
-documentation

Description
-doc and -documentation opens Polyspace documentation in a help browser. You can
see information such as getting started, workflows and reference pages for commands
and analysis options. You can also search through the documentation in the help browser.

Examples
Display Polyspace documentation in a help browser:

• Bug Finder:

polyspace-bug-finder -doc
polyspace-bug-finder -documentation

• Code Prover:

polyspace-code-prover -doc
polyspace-code-prover -documentation

• Bug Finder Server:

polyspace-bug-finder-server -doc
polyspace-bug-finder-server -documentation

• Code Prover Server:

polyspace-code-prover-server -doc
polyspace-code-prover-server -documentation

 -doc | -documentation

3-11

See Also
-h[elp]

3 Polyspace Command-Line Options

3-12

-function-behavior-specifications
Map imprecisely analyzed function to standard function for precise analysis

Syntax
-function-behavior-specifications file_path

Description
-function-behavior-specifications file_path specifies the path to an XML file.
You can use this XML file to map some of your functions to corresponding standard
functions that Polyspace recognizes. If you run verification from the command line,
file_path is the absolute path or path relative to the folder from which you run the
command. If you run verification from the user interface, file_path is the absolute path.

If you are running an analysis from the user interface (Polyspace desktop products only),
on the Configuration pane, you can enter this option in the Other field. See Other.

Using Option for Precision Improvement
This section applies only to a Code Prover analysis.

Use this option to reduce the number of orange checks from imprecise analysis of your
function. Sometimes, the verification does not analyze certain kinds of functions precisely
because of inherent limitations in static verification. In those cases, if you find a standard
function that is a close analog of your function, use this mapping. Though your function
itself is not analyzed, the analysis is more precise at the locations where you call the
function. For instance, if the verification cannot analyze your function cos32 precisely
and considers full range for its return value, map it to the cos function for a return value
in [-1,1].

The verification ignores the body of your function. However, the verification emulates
your function behavior in the following ways:

• The verification assumes the same return values for your function as the standard
function.

 -function-behavior-specifications

3-13

For instance, if you map your function cos32 to the standard function cos, the
verification assumes that cos32 returns values in [-1,1].

• The verification checks for the same issues as it checks with the standard function.

For instance, if you map your function acos32 to the standard function acos,
the Invalid use of standard library routine check determines if the
argument of acos32 is in [-1,1].

A sample file function-behavior-specifications-sample.xml shows the
functions that you can map to. The file is in polyspaceroot\polyspace\verifier
\cxx\ where polyspaceroot is the Polyspace installation folder. The functions that you
can map to include:

• Standard library functions from math.h.
• Memory management functions from string.h.
• __ps_meminit: A function specific to Polyspace that initializes a memory area.

Sometimes, the verification does not recognize your memory initialization function and
produces an orange Non-initialized local variable check on a variable that
you initialized through this function. If you know that your memory initialization
function initializes the variable through its address, map your function to
__ps_meminit. The check turns green.

• __ps_lookup_table_clip: A function specific to Polyspace that returns a value
within the range of the input array.

Sometimes, the verification considers full range for the return values of functions that
look up values in large arrays (look-up table functions). If you know that the return
value of a look-up table function must be within the range of values in its input array,
map the function to __ps_lookup_table_clip.

In code generated from models, the verification by default makes this assumption for
look-up table functions. To identify if the look-up table uses linear interpolation and no
extrapolation, the verification uses the function names. Use the mapping only for
handwritten functions, for instance, functions in a C/C++ S-Function block. The
names of those functions do not follow specific conventions. You must explicitly specify
them.

Using Option for Concurrency Detection
This section applies both to a Bug Finder and a Code Prover analysis.

3 Polyspace Command-Line Options

3-14

Use this option for automatic detection of thread-creation functions and functions that
begin and end critical sections. Polyspace supports automatic detection for certain
families of multitasking primitives only. Extend the support using this option.

If your thread-creation function, for instance, does not belong to one of the supported
families, map your function to a supported concurrency primitive.

To find which multitasking primitives can be automatically detected, see “Auto-Detection
of Thread Creation and Critical Section in Polyspace”.

Examples

Specify Mapping to Standard Function
You can adapt the sample mapping XML file provided with your Polyspace installation and
map your function to a standard function.

Suppose the default verification produces an orange User assertion check on this
code:

double x = acos32(1.0) ;
assert(x <= 2.0);

Suppose you know that the function acos32 behaves like the function acos and the
return value is 0. You expect the check on the assert statement to be green. However,
the verification considers that acos32 returns any value in the range of type double
because acos32 is not precisely analyzed. The check is orange. To map your function
acos32 to acos:

1 Copy the file function-behavior-specifications-sample.xml from
polyspaceroot\polyspace\verifier\cxx\ to another location, for instance,
"C:\Polyspace_projects\Common\Config_files". Change the write
permissions on the file.

2 To map your function to a standard function, modify the contents of the XML file. To
map your function acos32 to the standard library function acos, change the
following code:

<function name="my_lib_cos" std="acos"> </function>

To:

 -function-behavior-specifications

3-15

<function name="acos32" std="acos"> </function>
3 Specify the location of the file for verification:

• Code Prover:

polyspace-code-prover -function-behavior-specifications
 "C:\Polyspace_projects\Common\Config_files
 \function-behavior-specifications-sample.xml"

• Code Prover Server:

polyspace-code-prover-server -function-behavior-specifications
 "C:\Polyspace_projects\Common\Config_files
 \function-behavior-specifications-sample.xml"

Specify Mapping to Standard Function with Argument
Remapping
Sometimes, the arguments of your function do not map one-to-one with arguments of the
standard function. In those cases, remap your function argument to the standard function
argument. For instance:

• __ps_lookup_table_clip:

This function specific to Polyspace takes only a look-up table array as argument and
returns values within the range of the look-up table. Your look-up table function might
have additional arguments besides the look-up table array itself. In this case, use
argument remapping to specify which argument of your function is the look-up table
array.

For instance, suppose a function my_lookup_table has the following declaration:

double my_lookup_table(double u0, const real_T *table,
 const double *bp0);

The second argument of your function my_lookup_table is the look-up table array.
In the file function-behavior-specifications-sample.xml, add this code:

<function name="my_lookup_table" std="__ps_lookup_table_clip">
 <mapping std_arg="1" arg="2"></mapping>
</function>

When you call the function:

3 Polyspace Command-Line Options

3-16

res = my_lookup_table(u, table10, bp);

The verification interprets the call as:

res =__ps_lookup_table_clip(table10);

The verification assumes that the value of res lies within the range of values in
table10.

• __ps_meminit:

This function specific to Polyspace takes a memory address as the first argument and a
number of bytes as the second argument. The function assumes that the bytes in
memory starting from the memory address are initialized with a valid value. Your
memory initialization function might have additional arguments. In this case, use
argument remapping to specify which argument of your function is the starting
address and which argument is the number of bytes.

For instance, suppose a function my_meminit has the following declaration:

 void my_meminit(enum InitKind k, void* dest, int is_aligned,
 unsigned int size);

The second argument of your function is the starting address and the fourth argument
is the number of bytes. In the file function-behavior-specifications-
sample.xml, add this code:

<function name="my_meminit" std="__ps_meminit">
 <mapping std_arg="1" arg="2"></mapping>
 <mapping std_arg="2" arg="4"></mapping>
</function>

When you call the function:

my_meminit(INIT_START_BY_END, &buffer, 0, sizeof(buffer));

The verification interprets the call as:

__ps_meminit(&buffer, sizeof(buffer));

The verification assumes that sizeof(buffer) number of bytes starting from
&buffer are initialized.

• memset: Variable number of arguments.

 -function-behavior-specifications

3-17

If your function has variable number of arguments, you cannot map it directly to a
standard function without explicit argument remapping. For instance, say your
function is declared as:

void* my_memset(void*, int, size_t, ...)

To map the function to the memset function, use the following mapping:

<function name="my_memset" std="memset">
 <mapping std_arg="1" arg="1"></mapping>
 <mapping std_arg="2" arg="2"></mapping>
 <mapping std_arg="3" arg="3"></mapping>
</function>

Effect of Mapping on Precision
These examples show the result of mapping certain functions to standard functions:

• my_acos → acos:

If you use the mapping, the User assertion check turns green. The verification
assumes that the return value of my_acos is 0.

• Before mapping:

double x = my_acos(1.0);
assert(x <= 2.0);

• Mapping specification:

<function name="my_acos" std="acos">
</function>

• After mapping:

double x = my_acos(1.0);
assert(x <= 2.0);

• my_sqrt → sqrt:

If you use the mapping, the Invalid use of standard library routine check
turns red. Otherwise, the verification does not check whether the argument of
my_sqrt is nonnegative.

• Before mapping:

3 Polyspace Command-Line Options

3-18

res = my_sqrt(-1.0);
• Mapping specification:

<function name="my_sqrt" std="sqrt">
</function>

• After mapping:

res = my_sqrt(-1.0);
• my_lookup_table (argument 2) →__ps_lookup_table_clip (argument 1):

If you use the mapping, the User assertion check turns green. The verification
assumes that the return value of my_lookup_table is within the range of the look-up
table array table.

• Before mapping:

double table[3] = {1.1, 2.2, 3.3}
.
.
double res = my_lookup_table(u, table, bp);
assert(res >= 1.1 && res <= 3.3);

• Mapping specification:

<function name="my_lookup_table" std="__ps_lookup_table_clip">
 <mapping std_arg="1" arg="2"></mapping>
</function>

• After mapping:

double table[3] = {1.1, 2.2, 3.3}
.
.
res_real = my_lookup_table(u, table9, bp);
assert(res_real >= 1.1 && res_real <= 3.3);

• my_meminit →__ps_meminit:

If you use the mapping, the Non-initialized local variable check turns green.
The verification assumes that all fields of the structure x are initialized with valid
values.

• Before mapping:

struct X {
 int field1 ;

 -function-behavior-specifications

3-19

 int field2 ;
};
.
.
struct X x;
my_meminit(&x, sizeof(struct X));
return x.field1;

• Mapping specification:

<function name="my_meminit" std="__ps_meminit">
 <mapping std_arg="1" arg="1"></mapping>
 <mapping std_arg="2" arg="2"></mapping>
</function>

• After mapping:

struct X {
 int field1 ;
 int field2 ;
};
.
.
struct X x;
my_meminit(&x, sizeof(struct X));
return x.field1;

• my_meminit →__ps_meminit:

If you use the mapping, the Non-initialized local variable check turns red.
The verification assumes that only the field field1 of the structure x is initialized
with valid values.

• Before mapping:

struct X {
 int field1 ;
 int field2 ;
};
.
.
struct X x;
my_meminit(&x, sizeof(int));
return x.field2;

• Mapping specification:

3 Polyspace Command-Line Options

3-20

<function name="my_meminit" std="__ps_meminit">
</function>

• After mapping:

struct X {
 int field1 ;
 int field2 ;
};
.
.
struct X x;
my_meminit(&x, sizeof(int));
return x.field2;

Effect of Mapping on Concurrency Detection
In this example, the Polyspace support for automatic concurrency detection is extended
by mapping unsupported functions to the supported Pthreads functions.

• Thread creation function: createTask → pthread_create
• Function that begins critical section: takeLock → pthread_mutex_lock
• Function that ends critical section: releaseLock → pthread_mutex_unlock

If you use the mapping, a Bug Finder analysis can determine the multitasking model used
in your code and find possible race conditions.

• Before mapping:

The analysis does not detect the data race on var2.

typedef void* (*FUNT) (void*);

extern int takeLock(int* t);
extern int releaseLock(int* t);
// First argument is the function, second the id
extern int createTask(FUNT,int*,int*,void*);

int t_id1,t_id2;
int lock;

int var1;
int var2;

 -function-behavior-specifications

3-21

void* task1(void* a) {
 takeLock(&lock);
 var1++;
 var2++;
 releaseLock(&lock);
 return 0;
}

void* task2(void* a) {
 takeLock(&lock);
 var1++;
 releaseLock(&lock);
 var2++;
 return 0;
}

void main() {
 createTask(task1,&t_id1,0,0);
 createTask(task2,&t_id2,0,0);
}

• Mapping specification:

Based on the number and type of parameters of the function createTask, it is
convenient to map createTask to the thread creation function pthread_create.
The other available alternatives, createThread or OSTaskCreate, have different
argument types.

Even when mapping to pthread_create, argument remapping is required, because
the arguments do not correspond exactly. The thread start routine is the third
argument of pthread_create but the first argument of createTask.

<function name="createTask" std="pthread_create" >
 <mapping std_arg="1" arg="2"></mapping>
 <mapping std_arg="3" arg="1"></mapping>
 <mapping std_arg="2" arg="3"></mapping>
 <mapping std_arg="4" arg="4"></mapping>
</function>
<function name="takeLock" std="pthread_mutex_lock" >
</function>
<function name="releaseLock" std="pthread_mutex_unlock" >
</function>

3 Polyspace Command-Line Options

3-22

For the list of supported functions that you can map to, see the sample mapping file
function-behavior-specifications-sample.xml in polyspaceroot
\polyspace\verifier\cxx\. polyspaceroot is the Polyspace installation folder,
such as C:\Program Files\Polyspace\R2019a. See also “Auto-Detection of
Thread Creation and Critical Section in Polyspace”.

• After mapping:

The analysis detects the data race on var2.

typedef void* (*FUNT) (void*);

extern int takeLock(int* t);
extern int releaseLock(int* t);
// First argument is the function, second the id
extern int createTask(FUNT,int*,int*,void*);

int t_id1,t_id2;
int lock;

int var1;
int var2;

void* task1(void* a) {
 takeLock(&lock);
 var1++;
 var2++;
 releaseLock(&lock);
 return 0;
}

void* task2(void* a) {
 takeLock(&lock);
 var1++;
 releaseLock(&lock);
 var2++;
 return 0;
}

void main() {
 createTask(task1,&t_id1,0,0);
 createTask(task2,&t_id2,0,0);
}

 -function-behavior-specifications

3-23

See Also

Topics
“Prepare Scripts for Polyspace Analysis”

Introduced in R2016b

3 Polyspace Command-Line Options

3-24

-generate-launching-script-for
Extract information from project file

Syntax
-generate-launching-script-for PRJFILE

Description
-generate-launching-script-for PRJFILE extracts information from a project file
PRJFILE (created in the user interface of the Polyspace desktop products) so that you can
run an analysis from the command line. For each project module and each configuration
in each module, a folder is created containing the following files::

• source_command.txt — List of source files for the -sources-list-file option.
• options_command.txt — List of the analysis options for the -options-file

option.
• temporal_exclusions.txt — List of temporal exclusions, generated only if you

specify the Temporally exclusive tasks (-temporal-exclusions-file)
option.

• .polyspace_conf.psprj — A copy of the project file Polyspace used to generate the
scripting files.

• launchingCommand.sh (UNIX) or launchingCommand.bat (DOS) — shell script
that calls the correct commands. The script also calls any options that cannot be given
to the -options-file command, such as -batch or -add-to-results-
repository. You can give this file additional analysis options as parameters.

Note The script that Polyspace generates runs the same analysis that Polyspace runs
from the user interface. If your project runs in the Polyspace user interface, the script will
run from the command line.

 -generate-launching-script-for

3-25

Examples
Extract information to run myproject from the command line. Use this option with the
desktop binary polyspace:

• Bug Finder:

polyspace -generate-launching-script-for myproject.psprj -bug-finder
• Code Prover:

polyspace -generate-launching-script-for myproject.psprj

See Also

Topics
“Configure Polyspace Analysis Options in User Interface and Generate Scripts”

3 Polyspace Command-Line Options

3-26

-h | -help
Display list of possible options

Syntax
-h
-help

Description
-h and -help display the list of possible options in the command window along with
option argument syntax.

Examples
Display the command-line help:

• Bug Finder:

polyspace-bug-finder -h
polyspace-bug-finder -help

• Code Prover:

polyspace-code-prover -h
polyspace-code-prover -help

• Bug Finder Server:

polyspace-bug-finder-server -h
polyspace-bug-finder-server -help

• Code Prover Server:

polyspace-code-prover-server -h
polyspace-code-prover-server -help

 -h | -help

3-27

-doc | -documentation

3 Polyspace Command-Line Options

3-28

-I
Specify include folder for compilation

Syntax
-I folder

Description
-I folder specifies a folder that contains include files required for compiling your
sources. You can specify only one folder for each instance of -I. However, you can specify
this option multiple times.

The analysis looks for include files relative to the folder paths that you specify. For
instance, if your code contains the preprocessor directive #include<../mylib.h> and
you include the folder:

C:\My_Project\MySourceFiles\Includes

the folder C:\My_Project\MySourceFiles must contain a file mylib.h.

The analysis automatically includes the ./sources folder (if it exists) after the include
folders that you specify.

Examples
Include two folders with the analysis:

• Bug Finder:

polyspace-bug-finder -I /com1/inc -I /com1/sys/inc

• Code Prover:

polyspace-code-prover -I /com1/inc -I /com1/sys/inc

 -I

3-29

• Bug Finder Server:

polyspace-bug-finder-server -I /com1/inc -I /com1/sys/inc
• Code Prover Server:

polyspace-code-prover-server -I /com1/inc -I /com1/sys/inc

The source folder is implicitly included. Include files in the source folder can be found
automatically without explicit inclusion of the source folder with the -I option.

See Also

Topics
“Prepare Scripts for Polyspace Analysis”

3 Polyspace Command-Line Options

3-30

-import-comments
Import comments and justifications from previous analysis

Syntax
-import-comments resultsFolder

Description
-import-comments resultsFolder imports the comments and justifications from a
previous analysis, as specified by the results folder.

You can import comments from the same type of results only. For instance:

• You cannot import comments from a results of a Bug Finder checker to a Code Prover
run-time check. Even when the checker names sound similar, the underlying semantics
of Bug Finder and Code Prover can be different. The only exception is checkers for
coding rules. You can import comments between Bug Finder and Code Prover for
coding rule violations.

• You cannot import comments from results of a file-by-file verification in Code Prover to
results of a regular Code Prover verification.

If you are running an analysis from the user interface (Polyspace desktop products only),
on the Configuration pane, you can enter this option in the Other field. See Other.

Examples
Increment your project’s version number (-version) and import comments from the
previous results:

• Bug Finder:

polyspace-bug-finder -version 1.3
 -import-comments C:\Results\myProj\1.2

 -import-comments

3-31

• Code Prover:

polyspace-code-prover -version 1.3
 -import-comments C:\Results\myProj\1.2

• Bug Finder Server:

polyspace-bug-finder-server -version 1.3
 -import-comments C:\Results\myProj\1.2

• Code Prover Server:

polyspace-code-prover-server -version 1.3
 -import-comments C:\Results\myProj\1.2

See Also
-v[ersion] | polyspace-comments-import

Topics
“Import Comments from Previous Polyspace Analysis”

3 Polyspace Command-Line Options

3-32

-max-processes
Specify maximum number of processors for analysis

Syntax
-max-processes num

Description
-max-processes num specifies the maximum number of processes that you want the
analysis to use. On a multicore system, the software parallelizes the analysis and creates
the specified number of processes to speed up the analysis. The valid range of num is 1 to
128.

Unless you specify this option, a Code Prover verification uses up to four processes. If you
have fewer than four processes, the verification uses the maximum available number. To
increase or restrict the number of processes, use this option.

Unless you specify this option, a Bug Finder analysis uses the maximum number of
available processes. Use this option to restrict the number of processes used.

To use this option effectively, determine the number of processors available for use. If the
number of processes you create is greater than the number of processors available, the
analysis does not benefit from the parallelization. Check the system information in your
operating system. When you start a verification, a message states the number of logical
processors detected on your system.

If you are running an analysis from the user interface (Polyspace desktop products only),
on the Configuration pane, you can enter this option in the Other field. See Other.

Examples
Disable parallel processing during the analysis:

 -max-processes

3-33

• Bug Finder:

polyspace-bug-finder -max-processes 1
• Code Prover:

polyspace-code-prover -max-processes 1
• Bug Finder Server:

polyspace-bug-finder-server -max-processes 1
• Code Prover Server:

polyspace-code-prover-server -max-processes 1

Tips
You must have at least 4 GB of RAM per processor for analysis. For instance, if your
machine has 16 GB of RAM, do not use this option to specify more than four processes.

See Also

Topics
“Prepare Scripts for Polyspace Analysis”

3 Polyspace Command-Line Options

3-34

-non-preemptable-tasks
Specify functions that represent nonpreemptable tasks

Syntax
-non-preemptable-tasks function1[,function2[,...]]

Description
This option affects a Bug Finder analysis only.

-non-preemptable-tasks function1[,function2[,...]] specifies functions that
represent nonpreemptable tasks.

The functions cannot be interrupted by other noncyclic tasks and cyclic tasks but can be
interrupted by interrupts, preemptable or nonpreemptable. Noncyclic tasks are specified
with the option Tasks (-entry-points), cyclic tasks with the option Cyclic tasks
(-cyclic-tasks) and interrupts with the option Interrupts (-interrupts). For
examples, see “Define Preemptable Interrupts and Nonpreemptable Tasks”.

To specify a function as a nonpreemptable cyclic task, you must first specify the function
as a cyclic or noncyclic task. The functions that you specify must have the prototype:

void function_name(void);

If you are running an analysis from the user interface (Polyspace desktop products only),
on the Configuration pane, you can enter this option in the Other field. See Other.

See Also
-non-preemptable-tasks | -preemptable-interrupts | Critical section
details (-critical-section-begin -critical-section-end) | Cyclic tasks
(-cyclic-tasks) | Interrupts (-interrupts) | Tasks (-entry-points) |
Temporally exclusive tasks (-temporal-exclusions-file)

 -non-preemptable-tasks

3-35

Topics
“Prepare Scripts for Polyspace Analysis”
“Analyze Multitasking Programs in Polyspace”
“Configuring Polyspace Multitasking Analysis Manually”
“Protections for Shared Variables in Multitasking Code”
“Define Preemptable Interrupts and Nonpreemptable Tasks”
“Concurrency Defects” (Polyspace Bug Finder Access)

Introduced in R2016b

3 Polyspace Command-Line Options

3-36

-options-file
Run Polyspace using list of options

Syntax
-options-file file

Description
-options-file file specifies a file which lists your analysis options. The file must be
a text file with each option on a separate line. Use # to add comments to this file.

Examples
1 Create an options file called listofoptions.txt with your options. For example:

• Bug Finder or Bug Finder Server:

#These are the options for MyBugFinderProject
-lang c
-prog MyBugFinderProject
-author jsmith
-sources "mymain.c,funAlgebra.c,funGeometry.c"
-target x86_64
-compiler generic
-dos
-misra2 required-rules
-do-not-generate-results-for all-headers
-checkers default
-disable-checkers concurrency
-results-dir C:\Polyspace\MyBugFinderProject

• Code Prover or Code Prover Server:

#These are the options for MyCodeProverProject
-lang c
-prog MyCodeProverProject

 -options-file

3-37

-author jsmith
-sources "mymain.c,funAlgebra.c,funGeometry.c"
-target x86_64
-compiler generic
-dos
-misra2 required-rules
-do-not-generate-results-for all-headers
-main-generator
-results-dir C:\Polyspace\MyCodeProverProject

2 Run Polyspace using options in the file listofoptions.txt:

• Bug Finder:

polyspace-bug-finder -options-file listofoptions.txt
• Code Prover:

polyspace-code-prover -options-file listofoptions.txt
• Bug Finder Server:

polyspace-bug-finder-server -options-file listofoptions.txt
• Code Prover Server:

polyspace-code-prover-server -options-file listofoptions.txt

See Also

Topics
“Prepare Scripts for Polyspace Analysis”

3 Polyspace Command-Line Options

3-38

-options-for-sources
Specify analysis options specific to a source file

Syntax
-options-for-sources filename options

Description
-options-for-sources filename options associates a semicolon-separated list of
Polyspace analysis options with the source file specified by filename..

This option is primarily used when the polyspace-configure command creates an
options file for the subsequent Polyspace analysis. The option -options-for-sources
associates a group of analysis options such as include folders and macro definitions with
specific source files.

However, you can directly enter this option when manually writing options files. This
option is useful in situations where you want to associate a group of options with a
specific source file without applying it to other files.

In the user interface of the Polyspace desktop products, you can create a Polyspace
project from your build command. The project uses the option -options-for-sources
to associate specific Polyspace analysis options with specific files. However, when you
open the project in the user interface, you cannot see the use of this option. Open the
project in a text editor to see this option.

Examples
In this sample options file, the include folder /usr/lib/gcc/x86_64-linux-gnu/6/
include and the macros __STDC_VERSION__ and __GNUC__ are associated only with
the source file file.c and not fileAnother.c.

 -options-for-sources

3-39

-options-for-sources file.c;-I /usr/lib/gcc/x86_64-linux-gnu/6/include;
-options-for-sources file.c;-D __STDC_VERSION__=201112L;-D __GNUC__=6;
-sources file.c
-sources fileAnother.c

For the options used in this example, see:

• -sources
• -I
• Preprocessor definitions (-D)

See Also
-options-file | polyspace-configure

Topics
“Prepare Scripts for Polyspace Analysis”

3 Polyspace Command-Line Options

3-40

-preemptable-interrupts
Specify functions that represent preemptable interrupts

Syntax
-preemptable-interrupts function1[,function2[,...]]

Description
This option affects a Bug Finder analysis only.

-preemptable-interrupts function1[,function2[,...]] specifies functions
that represent preemptable interrupts.

The function acts as an interrupt in every way except that it can be interrupted by other
interrupts, preemptable or nonpreemptable. Interrupts are specified with the option
Interrupts (-interrupts). For examples, see “Define Preemptable Interrupts and
Nonpreemptable Tasks”.

To specify a function as a preemptable interrupt, you must first specify the function as an
interrupt. The functions that you specify must have the prototype:

void function_name(void);

If you are running an analysis from the user interface (Polyspace desktop products only),
on the Configuration pane, you can enter this option in the Other field. See Other.

See Also
-non-preemptable-tasks | -preemptable-interrupts | Critical section
details (-critical-section-begin -critical-section-end) | Cyclic tasks
(-cyclic-tasks) | Interrupts (-interrupts) | Tasks (-entry-points) |
Temporally exclusive tasks (-temporal-exclusions-file)

 -preemptable-interrupts

3-41

Topics
“Prepare Scripts for Polyspace Analysis”
“Analyze Multitasking Programs in Polyspace”
“Configuring Polyspace Multitasking Analysis Manually”
“Protections for Shared Variables in Multitasking Code”
“Define Preemptable Interrupts and Nonpreemptable Tasks”
“Concurrency Defects” (Polyspace Bug Finder Access)

Introduced in R2016b

3 Polyspace Command-Line Options

3-42

-prog
Specify name of project

Syntax
-prog projectName

Description
-prog projectName specifies a name for your Polyspace project. This name must use
only letters, numbers, underscores (_), dashes (-), or periods (.).

The name appears in the analysis log and a few other places.

Examples
Assign a name to your Polyspace project:

• Bug Finder:

polyspace-bug-finder -prog MyApp
• Code Prover:

polyspace-code-prover -prog MyApp
• Bug Finder Server:

polyspace-bug-finder-server -prog MyApp
• Code Prover Server:

polyspace-code-prover-server -prog MyApp

See Also
-author | -date

 -prog

3-43

Topics
“Prepare Scripts for Polyspace Analysis”

3 Polyspace Command-Line Options

3-44

-regex-replace-rgx -regex-replace-fmt
Make replacements in preprocessor directives

Syntax
-regex-replace-rgx matchFileName -regex-replace-fmt
replacementFileName

Description
-regex-replace-rgx matchFileName -regex-replace-fmt
replacementFileName replaces tokens in preprocessor directives for the purposes of
Polyspace analysis. The original source code is unchanged. You match a token using a
regular expression in the file matchFileName and replace the token using a replacement
in the file replacementFileName.

Use this option only to replace or remove tokens in the preprocessor directives before
preprocessing. If a token in your source code causes a compilation error, you can typically
replace or remove the token from the preprocessed code. Use the more convenient option
Command/script to apply to preprocessed files (-post-preprocessing-
command). You cannot make the replacements in preprocessed code only for tokens in
preprocessor directives.

If you are running an analysis from the user interface (Polyspace desktop products only),
on the Configuration pane, you can enter this option in the Other field. See Other.

In the user interface, specify absolute paths to the text files with the search and replace
patterns.

Examples
Suppose you want to replace _rom_beg in this #define directive:

#define ROM_BEG_ADDR (uint16*)(&_rom_beg)

 -regex-replace-rgx -regex-replace-fmt

3-45

and modify the directive to:

#define ROM_BEG_ADDR (0x4000u)

Specify this regular expression in a file match.txt:

^\s*#define\s+ROM_BEG_ADDR\s+\(uint16_t*\)\(\&_rom_beg\)

These elements are used in the regular expression:

• ^ asserts position at the start of a line.
• \s* represents zero or more whitespace characters.
• \s+ represents one or more whitespace characters.

The characters *, &, (and) in the original expression are escaped with \. For a complete
list of regular expressions, see Perl documentation.

Specify the replacement in a file replace.txt.

#define ROM_BEG_ADDR \(0x4000u\)

Specify the two text files during analysis with the options -regex-replace-rgx and -
regex-replace-fmt:

• Bug Finder:

polyspace-bug-finder -sources filename
 -regex-replace-rgx match.txt
 -regex-replace-fmt replace.txt

• Code Prover:

polyspace-code-prover -sources filename
 -regex-replace-rgx match.txt
 -regex-replace-fmt replace.txt

• Bug Finder Server:

polyspace-bug-finder-server -sources filename
 -regex-replace-rgx match.txt
 -regex-replace-fmt replace.txt

• Code Prover Server:

polyspace-code-prover-server -sources filename
 -regex-replace-rgx match.txt
 -regex-replace-fmt replace.txt

3 Polyspace Command-Line Options

3-46

https://perldoc.perl.org/perlre.html#Regular-Expressions

See Also
Command/script to apply to preprocessed files (-post-preprocessing-
command)

Topics
“Prepare Scripts for Polyspace Analysis”

 -regex-replace-rgx -regex-replace-fmt

3-47

-report-output-name
Specify name of report

Syntax
-report-output-name reportName

Description
-report-output-name reportName specifies the name of an analysis report.

The default name for a report is Prog_Template.Format:

• Prog is the name of the project specified by -prog.
• TemplateName is the type of report template specified by -report-template.
• Format is the file extension for the report specified by -report-output-format.

If you are running an analysis from the user interface (Polyspace desktop products only),
on the Configuration pane, you can enter this option in the Other field. See Other.

Examples
Specify the name of the analysis report:

• Bug Finder:

polyspace-bug-finder -report-template Developer
 -report-output-name Airbag_v3.doc

• Code Prover:

polyspace-code-prover -report-template Developer
 -report-output-name Airbag_v3.doc

• Bug Finder Server:

3 Polyspace Command-Line Options

3-48

polyspace-bug-finder-server -report-template Developer
 -report-output-name Airbag_v3.doc

• Code Prover Server:

polyspace-code-prover-server -report-template Developer
 -report-output-name Airbag_v3.doc

See Also
Bug Finder and Code Prover report (-report-template) | Output format
(-report-output-format)

Topics
“Prepare Scripts for Polyspace Analysis”

 -report-output-name

3-49

-results-dir
Specify the results folder

Syntax
-results-dir resultsFolder

Description
-results-dir resultsFolder specifies where to save the analysis results. The
default location at the command line is the current folder.

If you are running analysis in the user interface of the Polyspace desktop products, see
“Run Polyspace Analysis on Desktop” (Polyspace Bug Finder).

Examples
Specify to store your results in the RESULTS folder:

• Bug Finder:

polyspace-bug-finder -results-dir RESULTS
• Code Prover:

polyspace-code-prover -results-dir RESULTS
• Bug Finder Server:

polyspace-bug-finder-server -results-dir RESULTS
• Code Prover Server:

polyspace-code-prover-server -results-dir RESULTS

You can create the name of the results folder based on the verification date and time. For
instance, in a Bash shell, enter these commands to create a variable RESULTS that begins
with results_ and contains the current date and time:

3 Polyspace Command-Line Options

3-50

export DATETIME=$(date +%d%B_%HH%M_%A)
export RESULTS=results_$DATE

You can then use the variable RESULTS as argument of the option -results-dir:

-results-dir $RESULTS

See Also

Topics
“Prepare Scripts for Polyspace Analysis”

 -results-dir

3-51

-scheduler
Specify cluster or job scheduler

Syntax
-scheduler schedulingOption

Description
-scheduler schedulingOption specifies the head node of the MATLAB Parallel
Server cluster that manages Polyspace analysis submissions from multiple clients and
allocates the analysis to worker nodes. You use this option along with the option Run Bug
Finder or Code Prover analysis on a remote cluster (-batch) to offload
an analysis from a desktop to a remote cluster. Note that you use this option with the
commands in the desktop products (polyspace-bug-finder and polyspace-code-
prover) and not the commands in the server products (polyspace-bug-finder-
server and polyspace-code-prover-server).

For more information, see “Install Products for Submitting Polyspace Analysis from
Desktops to Remote Server”.

Examples
Run a batch analysis on a remote server using one of these syntaxes for the job scheduler:

• Bug Finder:

polyspace-bug-finder -batch -scheduler NodeHost
polyspace-bug-finder -batch -scheduler 192.168.1.124:12400
polyspace-bug-finder -batch -scheduler MJSName@NodeHost

• Code Prover:

polyspace-code-prover -batch -scheduler NodeHost
polyspace-code-prover -batch -scheduler 192.168.1.124:12400
polyspace-code-prover -batch -scheduler MJSName@NodeHost

3 Polyspace Command-Line Options

3-52

For details, see “Send Polyspace Analysis from Desktop to Remote Servers Using Scripts”.

You can track the status of the job using the polyspace-jobs-manager command:

polyspace-jobs-manager listjobs -scheduler NodeHost

See Also
Run Bug Finder or Code Prover analysis on a remote cluster (-batch)

Topics
“Send Polyspace Analysis from Desktop to Remote Servers Using Scripts”
“Send Bug Finder Analysis from Desktop to Locally Hosted Server”
“Install Products for Submitting Polyspace Analysis from Desktops to Remote Server”

 -scheduler

3-53

-sources
Specify source files

Syntax
-sources file1[,file2,...]
-sources file1 -sources file2

Description
-sources file1[,file2,...] or -sources file1 -sources file2 specifies the
list of source files that you want to analyze. You can use standard UNIX wildcards with
this option to specify your sources.

The source files are compiled in the order in which they are specified.

Examples
Analyze the files mymain.c, funAlgebra.c, and funGeometry.c.

• Bug Finder:

polyspace-bug-finder -sources mymain.c
 -sources funAlgebra.c -sources funGeometry.c

• Code Prover:

polyspace-code-prover -sources mymain.c
 -sources funAlgebra.c -sources funGeometry.c

• Bug Finder Server:

polyspace-bug-finder-server -sources mymain.c
 -sources funAlgebra.c -sources funGeometry.c

• Code Prover Server:

3 Polyspace Command-Line Options

3-54

polyspace-code-prover-server -sources mymain.c
 -sources funAlgebra.c -sources funGeometry.c

See Also
-sources-list-file | polyspace-configure

Topics
“Prepare Scripts for Polyspace Analysis”

 -sources

3-55

-sources-list-file
Specify file containing list of sources

Syntax
-sources-list-file file_path

Description
-sources-list-file file_path specifies the absolute path to a text file that lists
each file name that you want to analyze.

To specify your sources in the text file, on each line, specify the path to a source file. You
can specify an absolute path or a path relative to the folder from which you are running
the analysis. For example:

C:\Sources\myfile.c
C:\Sources2\myfile2.c

Examples
Run analysis on files listed in files.txt:

• Bug Finder:

polyspace-bug-finder -sources-list-file "C:\Analysis\files.txt"
polyspace-bug-finder -sources-list-file "/home/polyspace/files.txt"

• Code Prover:

polyspace-code-prover -sources-list-file "C:\Analysis\files.txt
polyspace-code-prover -sources-list-file "/home/polyspace/files.txt"

• Bug Finder Server:

polyspace-bug-finder-server -sources-list-file "C:\Analysis\files.txt"
polyspace-bug-finder-server -sources-list-file "/home/polyspace/files.txt"

3 Polyspace Command-Line Options

3-56

• Code Prover Server:

polyspace-code-prover-server -sources-list-file "C:\Analysis\files.txt
polyspace-code-prover-server -sources-list-file "/home/polyspace/files.txt"

See Also

Topics
“Prepare Scripts for Polyspace Analysis”

 -sources-list-file

3-57

-submit-job-from-previous-compilation-
results
Specify that the analysis job must be resubmitted without recompilation

Syntax
-submit-job-from-previous-compilation-results

Description
-submit-job-from-previous-compilation-results specifies that the Polyspace
analysis must start after the compilation phase with compilation results from a previous
analysis. The option is primarily useful when offloading a Polyspace analysis from
desktops to remote servers. If a remote analysis stops after compilation, for instance
because of communication problems between the server and client computers, use this
option. Note that you use this option with the commands in the desktop products
(polyspace-bug-finder and polyspace-code-prover) and not the commands in the
server products (polyspace-bug-finder-server and polyspace-code-prover-
server).

When you perform a remote analysis:

1 On the local host computer, the Polyspace software performs code compilation and
coding rule checking.

2 The analysis job is then submitted to the MATLAB job scheduler on the head node of
the MATLAB Parallel Server cluster.

3 The head node of the MATLAB Parallel Server cluster assigns the verification job to a
worker node, where the remaining phases of the Polyspace analysis occur.

If an analysis stops after completing the first step and you restart the analysis, use this
option to reuse compilation results from the previous analysis. You thereby avoid
restarting the analysis from the compilation phase.

If previous compilation results do not exist in the current folder, an error occurs. Remove
the option and restart analysis from the compilation phase.

3 Polyspace Command-Line Options

3-58

If you are running an analysis from the user interface (Polyspace desktop products only),
on the Configuration pane, you can enter this option in the Other field. See Other.

Examples
Specify remote analysis with compilation results from a previous analysis:

• Bug Finder:

polyspace-bug-finder -batch -scheduler localhost
 -submit-job-from-previous-compilation-results

• Code Prover:

polyspace-code-prover -batch -scheduler localhost
 -submit-job-from-previous-compilation-results

See Also

Topics
“Send Polyspace Analysis from Desktop to Remote Servers Using Scripts”
“Send Bug Finder Analysis from Desktop to Locally Hosted Server”
“Install Products for Submitting Polyspace Analysis from Desktops to Remote Server”

 -submit-job-from-previous-compilation-results

3-59

-termination-functions
Specify process termination functions

Syntax
-termination-functions function1[,function2[,...]]

Description
-termination-functions function1[,function2[,...]] specifies functions that
behave like the exit function and terminate your program.

Use this option to specify program termination functions that are declared but not defined
in your code.

If you are running an analysis from the user interface (Polyspace desktop products only),
on the Configuration pane, you can enter this option in the Other field. See Other.

Examples
Polyspace detects an Integer division by zero defect in the following code because it
does not recognize that my_exit terminates the program.

void my_exit();

double reciprocal(int val) {
 if(val==0)
 my_exit();
 return (1/val);
}

To prevent Polyspace from flagging the division operation, use the -termination-
functions option:

polyspace-bug-finder -termination-functions my_exit

3 Polyspace Command-Line Options

3-60

http://www.cplusplus.com/reference/cstdlib/exit/

See Also

 -termination-functions

3-61

-tmp-dir-in-results-dir
Keep temporary files in results folder

Syntax
-tmp-dir-in-results-dir

Description
-tmp-dir-in-results-dir specifies that temporary files must be stored in a subfolder
of the results folder. Use this option only when the standard temporary folder does not
have enough disk space. If the results folder is mounted on a network drive, this option
can slow down your processor.

To learn how Polyspace determines the temporary folder location, see “Storage of
Temporary Files” (Polyspace Bug Finder).

If you are running an analysis from the user interface (Polyspace desktop products only),
on the Configuration pane, you can enter this option in the Other field. See Other.

Examples
Store temporary files in the results folder:

• Bug Finder:

polyspace-bug-finder -tmp-dir-in-results-dir
• Code Prover:

polyspace-code-prover -tmp-dir-in-results-dir
• Bug Finder Server:

polyspace-bug-finder-server -tmp-dir-in-results-dir
• Code Prover Server:

3 Polyspace Command-Line Options

3-62

polyspace-code-prover-server -tmp-dir-in-results-dir

See Also

Topics
“Prepare Scripts for Polyspace Analysis”

 -tmp-dir-in-results-dir

3-63

-v | -version
Display Polyspace version number

Syntax
-v
-version

Description
-v or -version displays the version number of your Polyspace product.

Examples
Display the version number and release of your Polyspace product:

• Bug Finder:

polyspace-bug-finder -v
• Code Prover:

polyspace-code-prover -v
• Bug Finder Server:

polyspace-bug-finder-server -v
• Code Prover Server:

polyspace-code-prover-server -v

3 Polyspace Command-Line Options

3-64

-xml-annotations-description
Apply custom code annotations to Polyspace analysis results

Syntax
-xml-annotations-description file_path

Description
-xml-annotations-description file_path uses the annotation syntax defined in
the XML file located in file_path to interpret code annotations in your source files. You
can use the XML file to specify an annotation syntax and map it to the Polyspace
annotation syntax. When you run an analysis by using this option, you can justify and hide
results with annotations that use your syntax. If you run Polyspace at the command line,
file_path is the absolute path or path relative to the folder from which you run the
command. If you run Polyspace through the user interface, file_path is the absolute
path.

If you are running an analysis through the user interface, you can enter this option in the
Other field, under the Advanced Settings node on the Configuration pane. See Other.

Why Use This Option
If you have existing annotations from previous code reviews, you can import these
annotations to Polyspace. You do not have to review and justify results that you have
already annotated. Similarly, if your code comments must adhere to a specific format, you
can map and import that format to Polyspace.

 -xml-annotations-description

3-65

Examples
Import Existing Annotations for Coding Rule Violations
Suppose that you have previously reviewed source file zero_div.c containing the
following code, and justified certain MISRA C: 2012 violations by using custom
annotations.

#include <stdio.h>

/* Violation of Misra C:2012
rules 8.4 and 8.7 on the next
line of code. */

int func(int p) //My_rule 50, 51
{
 int i;
 int j = 1;

 i = 1024 / (j - p);
 return i;
}

/* Violation of Misra C:2012
rule 8.4 on the next line of
code */

int main(void){ //My_rule 50
 int x=func(2);
 return x;
}

The code comments My_rule 50, 51 and My_rule 50 do not use the Polyspace
annotation syntax. Instead, you use a convention where you place all MISRA rules in a
single numbered list. In this list, rules 8.4 and 8.7 correspond to the numbers 50 and
51.You can check this code for MISRA C: 2012 violations by typing the command:

• Bug Finder:

polyspace-bug-finder -sources source_path -misra3 all
• Code Prover:

polyspace-code-prover -sources source_path -misra3 all

3 Polyspace Command-Line Options

3-66

• Bug Finder Server:

polyspace-bug-finder-server -sources source_path -misra3 all

• Code Prover Server:

polyspace-code-prover-server -sources source_path -misra3 all

source_path is the path to zero_div.c.

The annotated violations appear in the Results List pane. You must review and justify
them again.

This XML example defines the annotation format used in zero_div.c and maps it to the
Polyspace annotation syntax:

• The format of the annotation is the keyword My_rule, followed by a space and one or
more comma-separated alphanumeric rule identifiers.

• Rule identifiers 50 and 51 are mapped to MISRA C: 2012 rules 8.4 and 8.7
respectively. The mapping uses the Polyspace annotation syntax.

 -xml-annotations-description

3-67

<?xml version="1.0" encoding="UTF-8"?>

<Annotations xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="annotations_xml_schema.xsd"
 Group="example annotation">

 <Expressions Search_For_Keywords="My_rule"
 Separator_Result_Name="," >

 <!-- This section defines the annotation syntax format -->
 <Expression Mode="SAME_LINE"
 Regex="My_rule\s(\w+(\s*,\s*\w+)*)"
 Rule_Identifier_Position="1"
 />

 </Expressions>
 <!-- This section maps the user annotation to the Polyspace
 annotation syntax -->
 <Mapping>
 <Result_Name_Mapping Rule_Identifier="50" Family="MISRA-C3" Result_Name="8.4"/>
 <Result_Name_Mapping Rule_Identifier="51" Family="MISRA-C3" Result_Name="8.7"/>
 </Mapping>
</Annotations>

To import the existing annotations and apply them to the corresponding Polyspace results:

1 Copy the preceding code example to a text editor and save it on your machine as
annotations_description.xml, for instance in C:\Polyspace_workspace
\annotations\.

2 Rerun the analysis on zero_div.c by using the command:

• Bug Finder:

polyspace-bug-finder -sources source_path -misra3 all ^
-xml-annotations-desription ^
C:\Polyspace_workspace\annotations\annotations_description.xml

• Code Prover:

polyspace-code-prover -sources source_path -misra3 all ^
-xml-annotations-desription ^
C:\Polyspace_workspace\annotations\annotations_description.xml

• Bug Finder Server:

3 Polyspace Command-Line Options

3-68

polyspace-bug-finder-server -sources source_path -misra3 all ^
-xml-annotations-desription ^
C:\Polyspace_workspace\annotations\annotations_description.xml

• Code Prover Server:

polyspace-code-prover-server -sources source_path -misra3 all ^
-xml-annotations-desription ^
C:\Polyspace_workspace\annotations\annotations_description.xml

Polyspace considers the annotated results justified and hides them in the Results List
pane.

See Also

Topics
“Prepare Scripts for Polyspace Analysis”
“Define Custom Annotation Format” (Polyspace Bug Finder)

 -xml-annotations-description

3-69

“Annotation Description Full XML Template” (Polyspace Bug Finder)

Introduced in R2017b

3 Polyspace Command-Line Options

3-70

